// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/gaussian_distribution.h" #include <algorithm> #include <cmath> #include <cstddef> #include <ios> #include <iterator> #include <random> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/macros.h" #include "absl/random/internal/chi_square.h" #include "absl/random/internal/distribution_test_util.h" #include "absl/random/internal/sequence_urbg.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" #include "absl/strings/str_format.h" #include "absl/strings/str_replace.h" #include "absl/strings/strip.h" namespace { using absl::random_internal::kChiSquared; template <typename RealType> class GaussianDistributionInterfaceTest : public ::testing::Test {}; using RealTypes = ::testing::Types<float, double, long double>; TYPED_TEST_CASE(GaussianDistributionInterfaceTest, RealTypes); TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) { using param_type = typename absl::gaussian_distribution<TypeParam>::param_type; const TypeParam kParams[] = { // Cases around 1. 1, // std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon // Arbitrary values. TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4), TypeParam(1e8), TypeParam(1e20), TypeParam(2.5), // Boundary cases. std::numeric_limits<TypeParam>::infinity(), std::numeric_limits<TypeParam>::max(), std::numeric_limits<TypeParam>::epsilon(), std::nextafter(std::numeric_limits<TypeParam>::min(), TypeParam(1)), // min + epsilon std::numeric_limits<TypeParam>::min(), // smallest normal // There are some errors dealing with denorms on apple platforms. std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm std::numeric_limits<TypeParam>::min() / 2, std::nextafter(std::numeric_limits<TypeParam>::min(), TypeParam(0)), // denorm_max }; constexpr int kCount = 1000; absl::InsecureBitGen gen; // Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to // all values in kParams, for (const auto mod : {0, 1, 2, 3}) { for (const auto x : kParams) { if (!std::isfinite(x)) continue; for (const auto y : kParams) { const TypeParam mean = (mod & 0x1) ? -x : x; const TypeParam stddev = (mod & 0x2) ? -y : y; const param_type param(mean, stddev); absl::gaussian_distribution<TypeParam> before(mean, stddev); EXPECT_EQ(before.mean(), param.mean()); EXPECT_EQ(before.stddev(), param.stddev()); { absl::gaussian_distribution<TypeParam> via_param(param); EXPECT_EQ(via_param, before); EXPECT_EQ(via_param.param(), before.param()); } // Smoke test. auto sample_min = before.max(); auto sample_max = before.min(); for (int i = 0; i < kCount; i++) { auto sample = before(gen); if (sample > sample_max) sample_max = sample; if (sample < sample_min) sample_min = sample; EXPECT_GE(sample, before.min()) << before; EXPECT_LE(sample, before.max()) << before; } if (!std::is_same<TypeParam, long double>::value) { ABSL_INTERNAL_LOG( INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev, sample_min, sample_max)); } std::stringstream ss; ss << before; if (!std::isfinite(mean) || !std::isfinite(stddev)) { // Streams do not parse inf/nan. continue; } // Validate stream serialization. absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f); EXPECT_NE(before.mean(), after.mean()); EXPECT_NE(before.stddev(), after.stddev()); EXPECT_NE(before.param(), after.param()); EXPECT_NE(before, after); ss >> after; #if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \ defined(__ppc__) || defined(__PPC__) || defined(__EMSCRIPTEN__) if (std::is_same<TypeParam, long double>::value) { // Roundtripping floating point values requires sufficient precision // to reconstruct the exact value. It turns out that long double // has some errors doing this on ppc, particularly for values // near {1.0 +/- epsilon}. // // Emscripten is even worse, implementing long double as a 128-bit // type, but shipping with a strtold() that doesn't support that. if (mean <= std::numeric_limits<double>::max() && mean >= std::numeric_limits<double>::lowest()) { EXPECT_EQ(static_cast<double>(before.mean()), static_cast<double>(after.mean())) << ss.str(); } if (stddev <= std::numeric_limits<double>::max() && stddev >= std::numeric_limits<double>::lowest()) { EXPECT_EQ(static_cast<double>(before.stddev()), static_cast<double>(after.stddev())) << ss.str(); } continue; } #endif EXPECT_EQ(before.mean(), after.mean()); EXPECT_EQ(before.stddev(), after.stddev()) // << ss.str() << " " // << (ss.good() ? "good " : "") // << (ss.bad() ? "bad " : "") // << (ss.eof() ? "eof " : "") // << (ss.fail() ? "fail " : ""); } } } } // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm class GaussianModel { public: GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {} double mean() const { return mean_; } double variance() const { return stddev() * stddev(); } double stddev() const { return stddev_; } double skew() const { return 0; } double kurtosis() const { return 3.0; } // The inverse CDF, or PercentPoint function. double InverseCDF(double p) { ABSL_ASSERT(p >= 0.0); ABSL_ASSERT(p < 1.0); return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p); } private: const double mean_; const double stddev_; }; struct Param { double mean; double stddev; double p_fail; // Z-Test probability of failure. int trials; // Z-Test trials. }; // GaussianDistributionTests implements a z-test for the gaussian // distribution. class GaussianDistributionTests : public testing::TestWithParam<Param>, public GaussianModel { public: GaussianDistributionTests() : GaussianModel(GetParam().mean, GetParam().stddev) {} // SingleZTest provides a basic z-squared test of the mean vs. expected // mean for data generated by the poisson distribution. template <typename D> bool SingleZTest(const double p, const size_t samples); // SingleChiSquaredTest provides a basic chi-squared test of the normal // distribution. template <typename D> double SingleChiSquaredTest(); // We use a fixed bit generator for distribution accuracy tests. This allows // these tests to be deterministic, while still testing the qualify of the // implementation. absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6}; }; template <typename D> bool GaussianDistributionTests::SingleZTest(const double p, const size_t samples) { D dis(mean(), stddev()); std::vector<double> data; data.reserve(samples); for (size_t i = 0; i < samples; i++) { const double x = dis(rng_); data.push_back(x); } const double max_err = absl::random_internal::MaxErrorTolerance(p); const auto m = absl::random_internal::ComputeDistributionMoments(data); const double z = absl::random_internal::ZScore(mean(), m); const bool pass = absl::random_internal::Near("z", z, 0.0, max_err); // NOTE: Informational statistical test: // // Compute the Jarque-Bera test statistic given the excess skewness // and kurtosis. The statistic is drawn from a chi-square(2) distribution. // https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test // // The null-hypothesis (normal distribution) is rejected when // (p = 0.05 => jb > 5.99) // (p = 0.01 => jb > 9.21) // NOTE: JB has a large type-I error rate, so it will reject the // null-hypothesis even when it is true more often than the z-test. // const double jb = static_cast<double>(m.n) / 6.0 * (std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0); if (!pass || jb > 9.21) { ABSL_INTERNAL_LOG( INFO, absl::StrFormat("p=%f max_err=%f\n" " mean=%f vs. %f\n" " stddev=%f vs. %f\n" " skewness=%f vs. %f\n" " kurtosis=%f vs. %f\n" " z=%f vs. 0\n" " jb=%f vs. 9.21", p, max_err, m.mean, mean(), std::sqrt(m.variance), stddev(), m.skewness, skew(), m.kurtosis, kurtosis(), z, jb)); } return pass; } template <typename D> double GaussianDistributionTests::SingleChiSquaredTest() { const size_t kSamples = 10000; const int kBuckets = 50; // The InverseCDF is the percent point function of the // distribution, and can be used to assign buckets // roughly uniformly. std::vector<double> cutoffs; const double kInc = 1.0 / static_cast<double>(kBuckets); for (double p = kInc; p < 1.0; p += kInc) { cutoffs.push_back(InverseCDF(p)); } if (cutoffs.back() != std::numeric_limits<double>::infinity()) { cutoffs.push_back(std::numeric_limits<double>::infinity()); } D dis(mean(), stddev()); std::vector<int32_t> counts(cutoffs.size(), 0); for (int j = 0; j < kSamples; j++) { const double x = dis(rng_); auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x); counts[std::distance(cutoffs.begin(), it)]++; } // Null-hypothesis is that the distribution is a gaussian distribution // with the provided mean and stddev (not estimated from the data). const int dof = static_cast<int>(counts.size()) - 1; // Our threshold for logging is 1-in-50. const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); const double expected = static_cast<double>(kSamples) / static_cast<double>(counts.size()); double chi_square = absl::random_internal::ChiSquareWithExpected( std::begin(counts), std::end(counts), expected); double p = absl::random_internal::ChiSquarePValue(chi_square, dof); // Log if the chi_square value is above the threshold. if (chi_square > threshold) { for (int i = 0; i < cutoffs.size(); i++) { ABSL_INTERNAL_LOG( INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i])); } ABSL_INTERNAL_LOG( INFO, absl::StrCat("mean=", mean(), " stddev=", stddev(), "\n", // " expected ", expected, "\n", // kChiSquared, " ", chi_square, " (", p, ")\n", // kChiSquared, " @ 0.98 = ", threshold)); } return p; } TEST_P(GaussianDistributionTests, ZTest) { // TODO(absl-team): Run these tests against std::normal_distribution<double> // to validate outcomes are similar. const size_t kSamples = 10000; const auto& param = GetParam(); const int expected_failures = std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail))); const double p = absl::random_internal::RequiredSuccessProbability( param.p_fail, param.trials); int failures = 0; for (int i = 0; i < param.trials; i++) { failures += SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1; } EXPECT_LE(failures, expected_failures); } TEST_P(GaussianDistributionTests, ChiSquaredTest) { const int kTrials = 20; int failures = 0; for (int i = 0; i < kTrials; i++) { double p_value = SingleChiSquaredTest<absl::gaussian_distribution<double>>(); if (p_value < 0.0025) { // 1/400 failures++; } } // There is a 0.05% chance of producing at least one failure, so raise the // failure threshold high enough to allow for a flake rate of less than one in // 10,000. EXPECT_LE(failures, 4); } std::vector<Param> GenParams() { return { // Mean around 0. Param{0.0, 1.0, 0.01, 100}, Param{0.0, 1e2, 0.01, 100}, Param{0.0, 1e4, 0.01, 100}, Param{0.0, 1e8, 0.01, 100}, Param{0.0, 1e16, 0.01, 100}, Param{0.0, 1e-3, 0.01, 100}, Param{0.0, 1e-5, 0.01, 100}, Param{0.0, 1e-9, 0.01, 100}, Param{0.0, 1e-17, 0.01, 100}, // Mean around 1. Param{1.0, 1.0, 0.01, 100}, Param{1.0, 1e2, 0.01, 100}, Param{1.0, 1e-2, 0.01, 100}, // Mean around 100 / -100 Param{1e2, 1.0, 0.01, 100}, Param{-1e2, 1.0, 0.01, 100}, Param{1e2, 1e6, 0.01, 100}, Param{-1e2, 1e6, 0.01, 100}, // More extreme Param{1e4, 1e4, 0.01, 100}, Param{1e8, 1e4, 0.01, 100}, Param{1e12, 1e4, 0.01, 100}, }; } std::string ParamName(const ::testing::TestParamInfo<Param>& info) { const auto& p = info.param; std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_", absl::SixDigits(p.stddev)); return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); } INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests, ::testing::ValuesIn(GenParams()), ParamName); // NOTE: absl::gaussian_distribution is not guaranteed to be stable. TEST(GaussianDistributionTest, StabilityTest) { // absl::gaussian_distribution stability relies on the underlying zignor // data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and // std::abs. absl::random_internal::sequence_urbg urbg( {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); std::vector<int> output(11); { absl::gaussian_distribution<double> dist; std::generate(std::begin(output), std::end(output), [&] { return static_cast<int>(10000000.0 * dist(urbg)); }); EXPECT_EQ(13, urbg.invocations()); EXPECT_THAT(output, // testing::ElementsAre(1494, 25518841, 9991550, 1351856, -20373238, 3456682, 333530, -6804981, -15279580, -16459654, 1494)); } urbg.reset(); { absl::gaussian_distribution<float> dist; std::generate(std::begin(output), std::end(output), [&] { return static_cast<int>(1000000.0f * dist(urbg)); }); EXPECT_EQ(13, urbg.invocations()); EXPECT_THAT( output, // testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668, 33353, -680498, -1527958, -1645965, 149)); } } // This is an implementation-specific test. If any part of the implementation // changes, then it is likely that this test will change as well. // Also, if dependencies of the distribution change, such as RandU64ToDouble, // then this is also likely to change. TEST(GaussianDistributionTest, AlgorithmBounds) { absl::gaussian_distribution<double> dist; // In ~95% of cases, a single value is used to generate the output. // for all inputs where |x| < 0.750461021389 this should be the case. // // The exact constraints are based on the ziggurat tables, and any // changes to the ziggurat tables may require adjusting these bounds. // // for i in range(0, len(X)-1): // print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375) // // 0.125 <= |values| <= 0.75 const uint64_t kValues[] = { 0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull, 0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull, // negative values 0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull, 0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull}; // 0.875 <= |values| <= 0.984375 const uint64_t kExtraValues[] = { 0x7000000000000100ull, 0x7800000000000100ull, // 0x7c00000000000100ull, 0x7e00000000000100ull, // // negative values 0xf000000000000100ull, 0xf800000000000100ull, // 0xfc00000000000100ull, 0xfe00000000000100ull}; auto make_box = [](uint64_t v, uint64_t box) { return (v & 0xffffffffffffff80ull) | box; }; // The box is the lower 7 bits of the value. When the box == 0, then // the algorithm uses an escape hatch to select the result for large // outputs. for (uint64_t box = 0; box < 0x7f; box++) { for (const uint64_t v : kValues) { // Extra values are added to the sequence to attempt to avoid // infinite loops from rejection sampling on bugs/errors. absl::random_internal::sequence_urbg urbg( {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull}); auto a = dist(urbg); EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v; if (v & 0x8000000000000000ull) { EXPECT_LT(a, 0.0) << box << " " << std::hex << v; } else { EXPECT_GT(a, 0.0) << box << " " << std::hex << v; } } if (box > 10 && box < 100) { // The center boxes use the fast algorithm for more // than 98.4375% of values. for (const uint64_t v : kExtraValues) { absl::random_internal::sequence_urbg urbg( {make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull}); auto a = dist(urbg); EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v; if (v & 0x8000000000000000ull) { EXPECT_LT(a, 0.0) << box << " " << std::hex << v; } else { EXPECT_GT(a, 0.0) << box << " " << std::hex << v; } } } } // When the box == 0, the fallback algorithm uses a ratio of uniforms, // which consumes 2 additional values from the urbg. // Fallback also requires that the initial value be > 0.9271586026096681. auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); }; double tail[2]; { // 0.9375 absl::random_internal::sequence_urbg urbg( {make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull, 0x00000076f6f7f755ull}); tail[0] = dist(urbg); EXPECT_EQ(3, urbg.invocations()); EXPECT_GT(tail[0], 0); } { // -0.9375 absl::random_internal::sequence_urbg urbg( {make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull, 0x00000076f6f7f755ull}); tail[1] = dist(urbg); EXPECT_EQ(3, urbg.invocations()); EXPECT_LT(tail[1], 0); } EXPECT_EQ(tail[0], -tail[1]); EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0)); // When the box != 0, the fallback algorithm computes a wedge function. // Depending on the box, the threshold for varies as high as // 0.991522480228. { // 0.9921875, 0.875 absl::random_internal::sequence_urbg urbg( {make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull, 0x13CCA830EB61BD96ull}); tail[0] = dist(urbg); EXPECT_EQ(2, urbg.invocations()); EXPECT_GT(tail[0], 0); } { // -0.9921875, 0.875 absl::random_internal::sequence_urbg urbg( {make_box(0xff00000000000000ull, 120), 0xe000000000000001ull, 0x13CCA830EB61BD96ull}); tail[1] = dist(urbg); EXPECT_EQ(2, urbg.invocations()); EXPECT_LT(tail[1], 0); } EXPECT_EQ(tail[0], -tail[1]); EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0)); // Fallback rejected, try again. { // -0.9921875, 0.0625 absl::random_internal::sequence_urbg urbg( {make_box(0xff00000000000000ull, 120), 0x1000000000000001, make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull}); dist(urbg); EXPECT_EQ(3, urbg.invocations()); } } } // namespace