// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/discrete_distribution.h" #include <cmath> #include <cstddef> #include <cstdint> #include <iterator> #include <numeric> #include <random> #include <sstream> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/raw_logging.h" #include "absl/random/internal/chi_square.h" #include "absl/random/internal/distribution_test_util.h" #include "absl/random/internal/pcg_engine.h" #include "absl/random/internal/sequence_urbg.h" #include "absl/random/random.h" #include "absl/strings/str_cat.h" #include "absl/strings/strip.h" namespace { template <typename IntType> class DiscreteDistributionTypeTest : public ::testing::Test {}; using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t, uint32_t, int64_t, uint64_t>; TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes); TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) { using param_type = typename absl::discrete_distribution<TypeParam>::param_type; absl::discrete_distribution<TypeParam> empty; EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0)); absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0}); // Validate that the probabilities sum to 1.0. We picked values which // can be represented exactly to avoid floating-point roundoff error. double s = 0; for (const auto& x : before.probabilities()) { s += x; } EXPECT_EQ(s, 1.0); EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25)); // Validate the same data via an initializer list. { std::vector<double> data({1.0, 2.0, 1.0}); absl::discrete_distribution<TypeParam> via_param{ param_type(std::begin(data), std::end(data))}; EXPECT_EQ(via_param, before); } std::stringstream ss; ss << before; absl::discrete_distribution<TypeParam> after; EXPECT_NE(before, after); ss >> after; EXPECT_EQ(before, after); } TYPED_TEST(DiscreteDistributionTypeTest, Constructor) { auto fn = [](double x) { return x; }; { absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn); EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0)); } { absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn); // => fn(1.0 + 0 * 4 + 2) => 3 // => fn(1.0 + 1 * 4 + 2) => 7 EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7)); } } TEST(DiscreteDistributionTest, InitDiscreteDistribution) { using testing::Pair; { std::vector<double> p({1.0, 2.0, 3.0}); std::vector<std::pair<double, size_t>> q = absl::random_internal::InitDiscreteDistribution(&p); EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0)); // Each bucket is p=1/3, so bucket 0 will send half it's traffic // to bucket 2, while the rest will retain all of their traffic. EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2), // Pair(1.0, 1), // Pair(1.0, 2))); } { std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0}); std::vector<std::pair<double, size_t>> q = absl::random_internal::InitDiscreteDistribution(&p); EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0, 2 / 13.0)); // A more complex bucketing solution: Each bucket has p=0.2 // So buckets 0, 1, 4 will send their alternate traffic elsewhere, which // happens to be bucket 3. // However, summing up that alternate traffic gives bucket 3 too much // traffic, so it will send some traffic to bucket 2. constexpr double b0 = 1.0 / 13.0 / 0.2; constexpr double b1 = 2.0 / 13.0 / 0.2; constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1)); EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3), // Pair(b1, 3), // Pair(1.0, 2), // Pair(b3, 2), // Pair(b1, 3))); } } TEST(DiscreteDistributionTest, ChiSquaredTest50) { using absl::random_internal::kChiSquared; constexpr size_t kTrials = 10000; constexpr int kBuckets = 50; // inclusive, so actally +1 // 1-in-100000 threshold, but remember, there are about 8 tests // in this file. And the test could fail for other reasons. // Empirically validated with --runs_per_test=10000. const int kThreshold = absl::random_internal::ChiSquareValue(kBuckets, 0.99999); std::vector<double> weights(kBuckets, 0); std::iota(std::begin(weights), std::end(weights), 1); absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights)); // We use a fixed bit generator for distribution accuracy tests. This allows // these tests to be deterministic, while still testing the qualify of the // implementation. absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6); std::vector<int32_t> counts(kBuckets, 0); for (size_t i = 0; i < kTrials; i++) { auto x = dist(rng); counts[x]++; } // Scale weights. double sum = 0; for (double x : weights) { sum += x; } for (double& x : weights) { x = kTrials * (x / sum); } double chi_square = absl::random_internal::ChiSquare(std::begin(counts), std::end(counts), std::begin(weights), std::end(weights)); if (chi_square > kThreshold) { double p_value = absl::random_internal::ChiSquarePValue(chi_square, kBuckets); // Chi-squared test failed. Output does not appear to be uniform. std::string msg; for (size_t i = 0; i < counts.size(); i++) { absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n"); } absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n"); absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ", kThreshold); ABSL_RAW_LOG(INFO, "%s", msg.c_str()); FAIL() << msg; } } TEST(DiscreteDistributionTest, StabilityTest) { // absl::discrete_distribution stabilitiy relies on // absl::uniform_int_distribution and absl::bernoulli_distribution. absl::random_internal::sequence_urbg urbg( {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); std::vector<int> output(6); { absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0}); EXPECT_EQ(0, dist.min()); EXPECT_EQ(4, dist.max()); for (auto& v : output) { v = dist(urbg); } EXPECT_EQ(12, urbg.invocations()); } // With 12 calls to urbg, each call into discrete_distribution consumes // precisely 2 values: one for the uniform call, and a second for the // bernoulli. // // Given the alt mapping: 0=>3, 1=>3, 2=>2, 3=>2, 4=>3, we can // // uniform: 443210143131 // bernoulli: b0 000011100101 // bernoulli: b1 001111101101 // bernoulli: b2 111111111111 // bernoulli: b3 001111101111 // bernoulli: b4 001111101101 // ... EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3)); { urbg.reset(); absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0}); EXPECT_EQ(0, dist.min()); EXPECT_EQ(4, dist.max()); for (auto& v : output) { v = dist(urbg); } EXPECT_EQ(12, urbg.invocations()); } EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4)); } } // namespace