// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ #define ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_ #include <cassert> #include <cmath> #include <istream> #include <limits> #include <numeric> #include <type_traits> #include <utility> #include <vector> #include "absl/random/bernoulli_distribution.h" #include "absl/random/internal/iostream_state_saver.h" #include "absl/random/uniform_int_distribution.h" namespace absl { ABSL_NAMESPACE_BEGIN // absl::discrete_distribution // // A discrete distribution produces random integers i, where 0 <= i < n // distributed according to the discrete probability function: // // P(i|p0,...,pn−1)=pi // // This class is an implementation of discrete_distribution (see // [rand.dist.samp.discrete]). // // The algorithm used is Walker's Aliasing algorithm, described in Knuth, Vol 2. // absl::discrete_distribution takes O(N) time to precompute the probabilities // (where N is the number of possible outcomes in the distribution) at // construction, and then takes O(1) time for each variate generation. Many // other implementations also take O(N) time to construct an ordered sequence of // partial sums, plus O(log N) time per variate to binary search. // template <typename IntType = int> class discrete_distribution { public: using result_type = IntType; class param_type { public: using distribution_type = discrete_distribution; param_type() { init(); } template <typename InputIterator> explicit param_type(InputIterator begin, InputIterator end) : p_(begin, end) { init(); } explicit param_type(std::initializer_list<double> weights) : p_(weights) { init(); } template <class UnaryOperation> explicit param_type(size_t nw, double xmin, double xmax, UnaryOperation fw) { if (nw > 0) { p_.reserve(nw); double delta = (xmax - xmin) / static_cast<double>(nw); assert(delta > 0); double t = delta * 0.5; for (size_t i = 0; i < nw; ++i) { p_.push_back(fw(xmin + i * delta + t)); } } init(); } const std::vector<double>& probabilities() const { return p_; } size_t n() const { return p_.size() - 1; } friend bool operator==(const param_type& a, const param_type& b) { return a.probabilities() == b.probabilities(); } friend bool operator!=(const param_type& a, const param_type& b) { return !(a == b); } private: friend class discrete_distribution; void init(); std::vector<double> p_; // normalized probabilities std::vector<std::pair<double, size_t>> q_; // (acceptance, alternate) pairs static_assert(std::is_integral<result_type>::value, "Class-template absl::discrete_distribution<> must be " "parameterized using an integral type."); }; discrete_distribution() : param_() {} explicit discrete_distribution(const param_type& p) : param_(p) {} template <typename InputIterator> explicit discrete_distribution(InputIterator begin, InputIterator end) : param_(begin, end) {} explicit discrete_distribution(std::initializer_list<double> weights) : param_(weights) {} template <class UnaryOperation> explicit discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw) : param_(nw, xmin, xmax, std::move(fw)) {} void reset() {} // generating functions template <typename URBG> result_type operator()(URBG& g) { // NOLINT(runtime/references) return (*this)(g, param_); } template <typename URBG> result_type operator()(URBG& g, // NOLINT(runtime/references) const param_type& p); const param_type& param() const { return param_; } void param(const param_type& p) { param_ = p; } result_type(min)() const { return 0; } result_type(max)() const { return static_cast<result_type>(param_.n()); } // inclusive // NOTE [rand.dist.sample.discrete] returns a std::vector<double> not a // const std::vector<double>&. const std::vector<double>& probabilities() const { return param_.probabilities(); } friend bool operator==(const discrete_distribution& a, const discrete_distribution& b) { return a.param_ == b.param_; } friend bool operator!=(const discrete_distribution& a, const discrete_distribution& b) { return a.param_ != b.param_; } private: param_type param_; }; // -------------------------------------------------------------------------- // Implementation details only below // -------------------------------------------------------------------------- namespace random_internal { // Using the vector `*probabilities`, whose values are the weights or // probabilities of an element being selected, constructs the proportional // probabilities used by the discrete distribution. `*probabilities` will be // scaled, if necessary, so that its entries sum to a value sufficiently close // to 1.0. std::vector<std::pair<double, size_t>> InitDiscreteDistribution( std::vector<double>* probabilities); } // namespace random_internal template <typename IntType> void discrete_distribution<IntType>::param_type::init() { if (p_.empty()) { p_.push_back(1.0); q_.emplace_back(1.0, 0); } else { assert(n() <= (std::numeric_limits<IntType>::max)()); q_ = random_internal::InitDiscreteDistribution(&p_); } } template <typename IntType> template <typename URBG> typename discrete_distribution<IntType>::result_type discrete_distribution<IntType>::operator()( URBG& g, // NOLINT(runtime/references) const param_type& p) { const auto idx = absl::uniform_int_distribution<result_type>(0, p.n())(g); const auto& q = p.q_[idx]; const bool selected = absl::bernoulli_distribution(q.first)(g); return selected ? idx : static_cast<result_type>(q.second); } template <typename CharT, typename Traits, typename IntType> std::basic_ostream<CharT, Traits>& operator<<( std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) const discrete_distribution<IntType>& x) { auto saver = random_internal::make_ostream_state_saver(os); const auto& probabilities = x.param().probabilities(); os << probabilities.size(); os.precision(random_internal::stream_precision_helper<double>::kPrecision); for (const auto& p : probabilities) { os << os.fill() << p; } return os; } template <typename CharT, typename Traits, typename IntType> std::basic_istream<CharT, Traits>& operator>>( std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) discrete_distribution<IntType>& x) { // NOLINT(runtime/references) using param_type = typename discrete_distribution<IntType>::param_type; auto saver = random_internal::make_istream_state_saver(is); size_t n; std::vector<double> p; is >> n; if (is.fail()) return is; if (n > 0) { p.reserve(n); for (IntType i = 0; i < n && !is.fail(); ++i) { auto tmp = random_internal::read_floating_point<double>(is); if (is.fail()) return is; p.push_back(tmp); } } x.param(param_type(p.begin(), p.end())); return is; } ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_RANDOM_DISCRETE_DISTRIBUTION_H_