// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Benchmarks for absl random distributions as well as a selection of the // C++ standard library random distributions. #include <algorithm> #include <cstddef> #include <cstdint> #include <initializer_list> #include <iterator> #include <limits> #include <random> #include <type_traits> #include <vector> #include "absl/base/macros.h" #include "absl/meta/type_traits.h" #include "absl/random/bernoulli_distribution.h" #include "absl/random/beta_distribution.h" #include "absl/random/exponential_distribution.h" #include "absl/random/gaussian_distribution.h" #include "absl/random/internal/fast_uniform_bits.h" #include "absl/random/internal/randen_engine.h" #include "absl/random/log_uniform_int_distribution.h" #include "absl/random/poisson_distribution.h" #include "absl/random/random.h" #include "absl/random/uniform_int_distribution.h" #include "absl/random/uniform_real_distribution.h" #include "absl/random/zipf_distribution.h" #include "benchmark/benchmark.h" namespace { // Seed data to avoid reading random_device() for benchmarks. uint32_t kSeedData[] = { 0x1B510052, 0x9A532915, 0xD60F573F, 0xBC9BC6E4, 0x2B60A476, 0x81E67400, 0x08BA6FB5, 0x571BE91F, 0xF296EC6B, 0x2A0DD915, 0xB6636521, 0xE7B9F9B6, 0xFF34052E, 0xC5855664, 0x53B02D5D, 0xA99F8FA1, 0x08BA4799, 0x6E85076A, 0x4B7A70E9, 0xB5B32944, 0xDB75092E, 0xC4192623, 0xAD6EA6B0, 0x49A7DF7D, 0x9CEE60B8, 0x8FEDB266, 0xECAA8C71, 0x699A18FF, 0x5664526C, 0xC2B19EE1, 0x193602A5, 0x75094C29, 0xA0591340, 0xE4183A3E, 0x3F54989A, 0x5B429D65, 0x6B8FE4D6, 0x99F73FD6, 0xA1D29C07, 0xEFE830F5, 0x4D2D38E6, 0xF0255DC1, 0x4CDD2086, 0x8470EB26, 0x6382E9C6, 0x021ECC5E, 0x09686B3F, 0x3EBAEFC9, 0x3C971814, 0x6B6A70A1, 0x687F3584, 0x52A0E286, 0x13198A2E, 0x03707344, }; // PrecompiledSeedSeq provides kSeedData to a conforming // random engine to speed initialization in the benchmarks. class PrecompiledSeedSeq { public: using result_type = uint32_t; PrecompiledSeedSeq() {} template <typename Iterator> PrecompiledSeedSeq(Iterator begin, Iterator end) {} template <typename T> PrecompiledSeedSeq(std::initializer_list<T> il) {} template <typename OutIterator> void generate(OutIterator begin, OutIterator end) { static size_t idx = 0; for (; begin != end; begin++) { *begin = kSeedData[idx++]; if (idx >= ABSL_ARRAYSIZE(kSeedData)) { idx = 0; } } } size_t size() const { return ABSL_ARRAYSIZE(kSeedData); } template <typename OutIterator> void param(OutIterator out) const { std::copy(std::begin(kSeedData), std::end(kSeedData), out); } }; // use_default_initialization<T> indicates whether the random engine // T must be default initialized, or whether we may initialize it using // a seed sequence. This is used because some engines do not accept seed // sequence-based initialization. template <typename E> using use_default_initialization = std::false_type; // make_engine<T, SSeq> returns a random_engine which is initialized, // either via the default constructor, when use_default_initialization<T> // is true, or via the indicated seed sequence, SSeq. template <typename Engine, typename SSeq = PrecompiledSeedSeq> typename absl::enable_if_t<!use_default_initialization<Engine>::value, Engine> make_engine() { // Initialize the random engine using the seed sequence SSeq, which // is constructed from the precompiled seed data. SSeq seq(std::begin(kSeedData), std::end(kSeedData)); return Engine(seq); } template <typename Engine, typename SSeq = PrecompiledSeedSeq> typename absl::enable_if_t<use_default_initialization<Engine>::value, Engine> make_engine() { // Initialize the random engine using the default constructor. return Engine(); } template <typename Engine, typename SSeq> void BM_Construct(benchmark::State& state) { for (auto _ : state) { auto rng = make_engine<Engine, SSeq>(); benchmark::DoNotOptimize(rng()); } } template <typename Engine> void BM_Direct(benchmark::State& state) { using value_type = typename Engine::result_type; // Direct use of the URBG. auto rng = make_engine<Engine>(); for (auto _ : state) { benchmark::DoNotOptimize(rng()); } state.SetBytesProcessed(sizeof(value_type) * state.iterations()); } template <typename Engine> void BM_Generate(benchmark::State& state) { // std::generate makes a copy of the RNG; thus this tests the // copy-constructor efficiency. using value_type = typename Engine::result_type; std::vector<value_type> v(64); auto rng = make_engine<Engine>(); while (state.KeepRunningBatch(64)) { std::generate(std::begin(v), std::end(v), rng); } } template <typename Engine, size_t elems> void BM_Shuffle(benchmark::State& state) { // Direct use of the Engine. std::vector<uint32_t> v(elems); while (state.KeepRunningBatch(elems)) { auto rng = make_engine<Engine>(); std::shuffle(std::begin(v), std::end(v), rng); } } template <typename Engine, size_t elems> void BM_ShuffleReuse(benchmark::State& state) { // Direct use of the Engine. std::vector<uint32_t> v(elems); auto rng = make_engine<Engine>(); while (state.KeepRunningBatch(elems)) { std::shuffle(std::begin(v), std::end(v), rng); } } template <typename Engine, typename Dist, typename... Args> void BM_Dist(benchmark::State& state, Args&&... args) { using value_type = typename Dist::result_type; auto rng = make_engine<Engine>(); Dist dis{std::forward<Args>(args)...}; // Compare the following loop performance: for (auto _ : state) { benchmark::DoNotOptimize(dis(rng)); } state.SetBytesProcessed(sizeof(value_type) * state.iterations()); } template <typename Engine, typename Dist> void BM_Large(benchmark::State& state) { using value_type = typename Dist::result_type; volatile value_type kMin = 0; volatile value_type kMax = std::numeric_limits<value_type>::max() / 2 + 1; BM_Dist<Engine, Dist>(state, kMin, kMax); } template <typename Engine, typename Dist> void BM_Small(benchmark::State& state) { using value_type = typename Dist::result_type; volatile value_type kMin = 0; volatile value_type kMax = std::numeric_limits<value_type>::max() / 64 + 1; BM_Dist<Engine, Dist>(state, kMin, kMax); } template <typename Engine, typename Dist, int A> void BM_Bernoulli(benchmark::State& state) { volatile double a = static_cast<double>(A) / 1000000; BM_Dist<Engine, Dist>(state, a); } template <typename Engine, typename Dist, int A, int B> void BM_Beta(benchmark::State& state) { using value_type = typename Dist::result_type; volatile value_type a = static_cast<value_type>(A) / 100; volatile value_type b = static_cast<value_type>(B) / 100; BM_Dist<Engine, Dist>(state, a, b); } template <typename Engine, typename Dist, int A> void BM_Gamma(benchmark::State& state) { using value_type = typename Dist::result_type; volatile value_type a = static_cast<value_type>(A) / 100; BM_Dist<Engine, Dist>(state, a); } template <typename Engine, typename Dist, int A = 100> void BM_Poisson(benchmark::State& state) { volatile double a = static_cast<double>(A) / 100; BM_Dist<Engine, Dist>(state, a); } template <typename Engine, typename Dist, int Q = 2, int V = 1> void BM_Zipf(benchmark::State& state) { using value_type = typename Dist::result_type; volatile double q = Q; volatile double v = V; BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), q, v); } template <typename Engine, typename Dist> void BM_Thread(benchmark::State& state) { using value_type = typename Dist::result_type; auto rng = make_engine<Engine>(); Dist dis{}; for (auto _ : state) { benchmark::DoNotOptimize(dis(rng)); } state.SetBytesProcessed(sizeof(value_type) * state.iterations()); } // NOTES: // // std::geometric_distribution is similar to the zipf distributions. // The algorithm for the geometric_distribution is, basically, // floor(log(1-X) / log(1-p)) // Normal benchmark suite #define BM_BASIC(Engine) \ BENCHMARK_TEMPLATE(BM_Construct, Engine, PrecompiledSeedSeq); \ BENCHMARK_TEMPLATE(BM_Construct, Engine, std::seed_seq); \ BENCHMARK_TEMPLATE(BM_Direct, Engine); \ BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 10); \ BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100); \ BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000); \ BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100); \ BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, \ absl::random_internal::FastUniformBits<uint32_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, \ absl::random_internal::FastUniformBits<uint64_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int32_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, \ absl::uniform_int_distribution<int32_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, \ absl::uniform_int_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Large, Engine, \ std::uniform_int_distribution<int32_t>); \ BENCHMARK_TEMPLATE(BM_Large, Engine, \ std::uniform_int_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Large, Engine, \ absl::uniform_int_distribution<int32_t>); \ BENCHMARK_TEMPLATE(BM_Large, Engine, \ absl::uniform_int_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<float>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<double>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<float>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<double>) #define BM_COPY(Engine) BENCHMARK_TEMPLATE(BM_Generate, Engine) #define BM_THREAD(Engine) \ BENCHMARK_TEMPLATE(BM_Thread, Engine, \ absl::uniform_int_distribution<int64_t>) \ ->ThreadPerCpu(); \ BENCHMARK_TEMPLATE(BM_Thread, Engine, \ absl::uniform_real_distribution<double>) \ ->ThreadPerCpu(); \ BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100)->ThreadPerCpu(); \ BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000)->ThreadPerCpu(); \ BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100)->ThreadPerCpu(); \ BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000)->ThreadPerCpu(); #define BM_EXTENDED(Engine) \ /* -------------- Extended Uniform -----------------------*/ \ BENCHMARK_TEMPLATE(BM_Small, Engine, \ std::uniform_int_distribution<int32_t>); \ BENCHMARK_TEMPLATE(BM_Small, Engine, \ std::uniform_int_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Small, Engine, \ absl::uniform_int_distribution<int32_t>); \ BENCHMARK_TEMPLATE(BM_Small, Engine, \ absl::uniform_int_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Small, Engine, std::uniform_real_distribution<float>); \ BENCHMARK_TEMPLATE(BM_Small, Engine, \ std::uniform_real_distribution<double>); \ BENCHMARK_TEMPLATE(BM_Small, Engine, \ absl::uniform_real_distribution<float>); \ BENCHMARK_TEMPLATE(BM_Small, Engine, \ absl::uniform_real_distribution<double>); \ /* -------------- Other -----------------------*/ \ BENCHMARK_TEMPLATE(BM_Dist, Engine, std::normal_distribution<double>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::gaussian_distribution<double>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, std::exponential_distribution<double>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::exponential_distribution<double>); \ BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \ 100); \ BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \ 100); \ BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \ 10 * 100); \ BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \ 10 * 100); \ BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \ 13 * 100); \ BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \ 13 * 100); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, \ absl::log_uniform_int_distribution<int32_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, \ absl::log_uniform_int_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>); \ BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>); \ BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 2, \ 3); \ BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution, \ 257305); \ BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution, \ 257305); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 65, \ 41); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 99, \ 330); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 150, \ 150); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 410, \ 580); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 65, 41); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 99, \ 330); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 150, \ 150); \ BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 410, \ 580); \ BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<float>, 199); \ BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<double>, 199); // ABSL Recommended interfaces. BM_BASIC(absl::InsecureBitGen); // === pcg64_2018_engine BM_BASIC(absl::BitGen); // === randen_engine<uint64_t>. BM_THREAD(absl::BitGen); BM_EXTENDED(absl::BitGen); // Instantiate benchmarks for multiple engines. using randen_engine_64 = absl::random_internal::randen_engine<uint64_t>; using randen_engine_32 = absl::random_internal::randen_engine<uint32_t>; // Comparison interfaces. BM_BASIC(std::mt19937_64); BM_COPY(std::mt19937_64); BM_EXTENDED(std::mt19937_64); BM_BASIC(randen_engine_64); BM_COPY(randen_engine_64); BM_EXTENDED(randen_engine_64); BM_BASIC(std::mt19937); BM_COPY(std::mt19937); BM_BASIC(randen_engine_32); BM_COPY(randen_engine_32); } // namespace