// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <algorithm> #include <cstdint> #include <limits> #include <random> #include <vector> #include "benchmark/benchmark.h" #include "absl/base/config.h" #include "absl/numeric/int128.h" namespace { constexpr size_t kSampleSize = 1000000; std::mt19937 MakeRandomEngine() { std::random_device r; std::seed_seq seed({r(), r(), r(), r(), r(), r(), r(), r()}); return std::mt19937(seed); } template <typename T, typename H = typename std::conditional< std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type> std::vector<std::pair<T, T>> GetRandomClass128SampleUniformDivisor() { std::vector<std::pair<T, T>> values; std::mt19937 random = MakeRandomEngine(); std::uniform_int_distribution<H> uniform_h; values.reserve(kSampleSize); for (size_t i = 0; i < kSampleSize; ++i) { T a{absl::MakeUint128(uniform_h(random), uniform_h(random))}; T b{absl::MakeUint128(uniform_h(random), uniform_h(random))}; values.emplace_back(std::max(a, b), std::max(T(2), std::min(a, b))); } return values; } template <typename T> void BM_DivideClass128UniformDivisor(benchmark::State& state) { auto values = GetRandomClass128SampleUniformDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first / pair.second); } } } BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::uint128); BENCHMARK_TEMPLATE(BM_DivideClass128UniformDivisor, absl::int128); template <typename T> void BM_RemainderClass128UniformDivisor(benchmark::State& state) { auto values = GetRandomClass128SampleUniformDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first % pair.second); } } } BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::uint128); BENCHMARK_TEMPLATE(BM_RemainderClass128UniformDivisor, absl::int128); template <typename T, typename H = typename std::conditional< std::numeric_limits<T>::is_signed, int64_t, uint64_t>::type> std::vector<std::pair<T, H>> GetRandomClass128SampleSmallDivisor() { std::vector<std::pair<T, H>> values; std::mt19937 random = MakeRandomEngine(); std::uniform_int_distribution<H> uniform_h; values.reserve(kSampleSize); for (size_t i = 0; i < kSampleSize; ++i) { T a{absl::MakeUint128(uniform_h(random), uniform_h(random))}; H b{std::max(H{2}, uniform_h(random))}; values.emplace_back(std::max(a, T(b)), b); } return values; } template <typename T> void BM_DivideClass128SmallDivisor(benchmark::State& state) { auto values = GetRandomClass128SampleSmallDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first / pair.second); } } } BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::uint128); BENCHMARK_TEMPLATE(BM_DivideClass128SmallDivisor, absl::int128); template <typename T> void BM_RemainderClass128SmallDivisor(benchmark::State& state) { auto values = GetRandomClass128SampleSmallDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first % pair.second); } } } BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::uint128); BENCHMARK_TEMPLATE(BM_RemainderClass128SmallDivisor, absl::int128); std::vector<std::pair<absl::uint128, absl::uint128>> GetRandomClass128Sample() { std::vector<std::pair<absl::uint128, absl::uint128>> values; std::mt19937 random = MakeRandomEngine(); std::uniform_int_distribution<uint64_t> uniform_uint64; values.reserve(kSampleSize); for (size_t i = 0; i < kSampleSize; ++i) { values.emplace_back( absl::MakeUint128(uniform_uint64(random), uniform_uint64(random)), absl::MakeUint128(uniform_uint64(random), uniform_uint64(random))); } return values; } void BM_MultiplyClass128(benchmark::State& state) { auto values = GetRandomClass128Sample(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first * pair.second); } } } BENCHMARK(BM_MultiplyClass128); void BM_AddClass128(benchmark::State& state) { auto values = GetRandomClass128Sample(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first + pair.second); } } } BENCHMARK(BM_AddClass128); #ifdef ABSL_HAVE_INTRINSIC_INT128 // Some implementations of <random> do not support __int128 when it is // available, so we make our own uniform_int_distribution-like type. template <typename T, typename H = typename std::conditional< std::is_same<T, __int128>::value, int64_t, uint64_t>::type> class UniformIntDistribution128 { public: // NOLINTNEXTLINE: mimicking std::uniform_int_distribution API T operator()(std::mt19937& generator) { return (static_cast<T>(dist64_(generator)) << 64) | dist64_(generator); } private: std::uniform_int_distribution<H> dist64_; }; template <typename T, typename H = typename std::conditional< std::is_same<T, __int128>::value, int64_t, uint64_t>::type> std::vector<std::pair<T, T>> GetRandomIntrinsic128SampleUniformDivisor() { std::vector<std::pair<T, T>> values; std::mt19937 random = MakeRandomEngine(); UniformIntDistribution128<T> uniform_128; values.reserve(kSampleSize); for (size_t i = 0; i < kSampleSize; ++i) { T a = uniform_128(random); T b = uniform_128(random); values.emplace_back(std::max(a, b), std::max(static_cast<T>(2), std::min(a, b))); } return values; } template <typename T> void BM_DivideIntrinsic128UniformDivisor(benchmark::State& state) { auto values = GetRandomIntrinsic128SampleUniformDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first / pair.second); } } } BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, unsigned __int128); BENCHMARK_TEMPLATE(BM_DivideIntrinsic128UniformDivisor, __int128); template <typename T> void BM_RemainderIntrinsic128UniformDivisor(benchmark::State& state) { auto values = GetRandomIntrinsic128SampleUniformDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first % pair.second); } } } BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, unsigned __int128); BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128UniformDivisor, __int128); template <typename T, typename H = typename std::conditional< std::is_same<T, __int128>::value, int64_t, uint64_t>::type> std::vector<std::pair<T, H>> GetRandomIntrinsic128SampleSmallDivisor() { std::vector<std::pair<T, H>> values; std::mt19937 random = MakeRandomEngine(); UniformIntDistribution128<T> uniform_int128; std::uniform_int_distribution<H> uniform_int64; values.reserve(kSampleSize); for (size_t i = 0; i < kSampleSize; ++i) { T a = uniform_int128(random); H b = std::max(H{2}, uniform_int64(random)); values.emplace_back(std::max(a, static_cast<T>(b)), b); } return values; } template <typename T> void BM_DivideIntrinsic128SmallDivisor(benchmark::State& state) { auto values = GetRandomIntrinsic128SampleSmallDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first / pair.second); } } } BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, unsigned __int128); BENCHMARK_TEMPLATE(BM_DivideIntrinsic128SmallDivisor, __int128); template <typename T> void BM_RemainderIntrinsic128SmallDivisor(benchmark::State& state) { auto values = GetRandomIntrinsic128SampleSmallDivisor<T>(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first % pair.second); } } } BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, unsigned __int128); BENCHMARK_TEMPLATE(BM_RemainderIntrinsic128SmallDivisor, __int128); std::vector<std::pair<unsigned __int128, unsigned __int128>> GetRandomIntrinsic128Sample() { std::vector<std::pair<unsigned __int128, unsigned __int128>> values; std::mt19937 random = MakeRandomEngine(); UniformIntDistribution128<unsigned __int128> uniform_uint128; values.reserve(kSampleSize); for (size_t i = 0; i < kSampleSize; ++i) { values.emplace_back(uniform_uint128(random), uniform_uint128(random)); } return values; } void BM_MultiplyIntrinsic128(benchmark::State& state) { auto values = GetRandomIntrinsic128Sample(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first * pair.second); } } } BENCHMARK(BM_MultiplyIntrinsic128); void BM_AddIntrinsic128(benchmark::State& state) { auto values = GetRandomIntrinsic128Sample(); while (state.KeepRunningBatch(values.size())) { for (const auto& pair : values) { benchmark::DoNotOptimize(pair.first + pair.second); } } } BENCHMARK(BM_AddIntrinsic128); #endif // ABSL_HAVE_INTRINSIC_INT128 } // namespace