// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: hash.h // ----------------------------------------------------------------------------- // // This header file defines the Abseil `hash` library and the Abseil hashing // framework. This framework consists of the following: // // * The `absl::Hash` functor, which is used to invoke the hasher within the // Abseil hashing framework. `absl::Hash<T>` supports most basic types and // a number of Abseil types out of the box. // * `AbslHashValue`, an extension point that allows you to extend types to // support Abseil hashing without requiring you to define a hashing // algorithm. // * `HashState`, a type-erased class which implements the manipulation of the // hash state (H) itself, contains member functions `combine()` and // `combine_contiguous()`, which you can use to contribute to an existing // hash state when hashing your types. // // Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework // provides most of its utility by abstracting away the hash algorithm (and its // implementation) entirely. Instead, a type invokes the Abseil hashing // framework by simply combining its state with the state of known, hashable // types. Hashing of that combined state is separately done by `absl::Hash`. // // One should assume that a hash algorithm is chosen randomly at the start of // each process. E.g., `absl::Hash<int>{}(9)` in one process and // `absl::Hash<int>{}(9)` in another process are likely to differ. // // `absl::Hash` is intended to strongly mix input bits with a target of passing // an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect). // // Example: // // // Suppose we have a class `Circle` for which we want to add hashing: // class Circle { // public: // ... // private: // std::pair<int, int> center_; // int radius_; // }; // // // To add hashing support to `Circle`, we simply need to add a free // // (non-member) function `AbslHashValue()`, and return the combined hash // // state of the existing hash state and the class state. You can add such a // // free function using a friend declaration within the body of the class: // class Circle { // public: // ... // template <typename H> // friend H AbslHashValue(H h, const Circle& c) { // return H::combine(std::move(h), c.center_, c.radius_); // } // ... // }; // // For more information, see Adding Type Support to `absl::Hash` below. // #ifndef ABSL_HASH_HASH_H_ #define ABSL_HASH_HASH_H_ #include "absl/hash/internal/hash.h" namespace absl { ABSL_NAMESPACE_BEGIN // ----------------------------------------------------------------------------- // `absl::Hash` // ----------------------------------------------------------------------------- // // `absl::Hash<T>` is a convenient general-purpose hash functor for any type `T` // satisfying any of the following conditions (in order): // // * T is an arithmetic or pointer type // * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary // hash state `H`. // - T defines a specialization of `std::hash<T>` // // `absl::Hash` intrinsically supports the following types: // // * All integral types (including bool) // * All enum types // * All floating-point types (although hashing them is discouraged) // * All pointer types, including nullptr_t // * std::pair<T1, T2>, if T1 and T2 are hashable // * std::tuple<Ts...>, if all the Ts... are hashable // * std::unique_ptr and std::shared_ptr // * All string-like types including: // * absl::Cord // * std::string // * std::string_view (as well as any instance of std::basic_string that // uses char and std::char_traits) // * All the standard sequence containers (provided the elements are hashable) // * All the standard ordered associative containers (provided the elements are // hashable) // * absl types such as the following: // * absl::string_view // * absl::InlinedVector // * absl::FixedArray // * absl::uint128 // * absl::Time, absl::Duration, and absl::TimeZone // // Note: the list above is not meant to be exhaustive. Additional type support // may be added, in which case the above list will be updated. // // ----------------------------------------------------------------------------- // absl::Hash Invocation Evaluation // ----------------------------------------------------------------------------- // // When invoked, `absl::Hash<T>` searches for supplied hash functions in the // following order: // // * Natively supported types out of the box (see above) // * Types for which an `AbslHashValue()` overload is provided (such as // user-defined types). See "Adding Type Support to `absl::Hash`" below. // * Types which define a `std::hash<T>` specialization // // The fallback to legacy hash functions exists mainly for backwards // compatibility. If you have a choice, prefer defining an `AbslHashValue` // overload instead of specializing any legacy hash functors. // // ----------------------------------------------------------------------------- // The Hash State Concept, and using `HashState` for Type Erasure // ----------------------------------------------------------------------------- // // The `absl::Hash` framework relies on the Concept of a "hash state." Such a // hash state is used in several places: // // * Within existing implementations of `absl::Hash<T>` to store the hashed // state of an object. Note that it is up to the implementation how it stores // such state. A hash table, for example, may mix the state to produce an // integer value; a testing framework may simply hold a vector of that state. // * Within implementations of `AbslHashValue()` used to extend user-defined // types. (See "Adding Type Support to absl::Hash" below.) // * Inside a `HashState`, providing type erasure for the concept of a hash // state, which you can use to extend the `absl::Hash` framework for types // that are otherwise difficult to extend using `AbslHashValue()`. (See the // `HashState` class below.) // // The "hash state" concept contains two member functions for mixing hash state: // // * `H::combine(state, values...)` // // Combines an arbitrary number of values into a hash state, returning the // updated state. Note that the existing hash state is move-only and must be // passed by value. // // Each of the value types T must be hashable by H. // // NOTE: // // state = H::combine(std::move(state), value1, value2, value3); // // must be guaranteed to produce the same hash expansion as // // state = H::combine(std::move(state), value1); // state = H::combine(std::move(state), value2); // state = H::combine(std::move(state), value3); // // * `H::combine_contiguous(state, data, size)` // // Combines a contiguous array of `size` elements into a hash state, // returning the updated state. Note that the existing hash state is // move-only and must be passed by value. // // NOTE: // // state = H::combine_contiguous(std::move(state), data, size); // // need NOT be guaranteed to produce the same hash expansion as a loop // (it may perform internal optimizations). If you need this guarantee, use a // loop instead. // // ----------------------------------------------------------------------------- // Adding Type Support to `absl::Hash` // ----------------------------------------------------------------------------- // // To add support for your user-defined type, add a proper `AbslHashValue()` // overload as a free (non-member) function. The overload will take an // existing hash state and should combine that state with state from the type. // // Example: // // template <typename H> // H AbslHashValue(H state, const MyType& v) { // return H::combine(std::move(state), v.field1, ..., v.fieldN); // } // // where `(field1, ..., fieldN)` are the members you would use on your // `operator==` to define equality. // // Notice that `AbslHashValue` is not a class member, but an ordinary function. // An `AbslHashValue` overload for a type should only be declared in the same // file and namespace as said type. The proper `AbslHashValue` implementation // for a given type will be discovered via ADL. // // Note: unlike `std::hash', `absl::Hash` should never be specialized. It must // only be extended by adding `AbslHashValue()` overloads. // template <typename T> using Hash = absl::hash_internal::Hash<T>; // HashState // // A type erased version of the hash state concept, for use in user-defined // `AbslHashValue` implementations that can't use templates (such as PImpl // classes, virtual functions, etc.). The type erasure adds overhead so it // should be avoided unless necessary. // // Note: This wrapper will only erase calls to: // combine_contiguous(H, const unsigned char*, size_t) // // All other calls will be handled internally and will not invoke overloads // provided by the wrapped class. // // Users of this class should still define a template `AbslHashValue` function, // but can use `absl::HashState::Create(&state)` to erase the type of the hash // state and dispatch to their private hashing logic. // // This state can be used like any other hash state. In particular, you can call // `HashState::combine()` and `HashState::combine_contiguous()` on it. // // Example: // // class Interface { // public: // template <typename H> // friend H AbslHashValue(H state, const Interface& value) { // state = H::combine(std::move(state), std::type_index(typeid(*this))); // value.HashValue(absl::HashState::Create(&state)); // return state; // } // private: // virtual void HashValue(absl::HashState state) const = 0; // }; // // class Impl : Interface { // private: // void HashValue(absl::HashState state) const override { // absl::HashState::combine(std::move(state), v1_, v2_); // } // int v1_; // std::string v2_; // }; class HashState : public hash_internal::HashStateBase<HashState> { public: // HashState::Create() // // Create a new `HashState` instance that wraps `state`. All calls to // `combine()` and `combine_contiguous()` on the new instance will be // redirected to the original `state` object. The `state` object must outlive // the `HashState` instance. template <typename T> static HashState Create(T* state) { HashState s; s.Init(state); return s; } HashState(const HashState&) = delete; HashState& operator=(const HashState&) = delete; HashState(HashState&&) = default; HashState& operator=(HashState&&) = default; // HashState::combine() // // Combines an arbitrary number of values into a hash state, returning the // updated state. using HashState::HashStateBase::combine; // HashState::combine_contiguous() // // Combines a contiguous array of `size` elements into a hash state, returning // the updated state. static HashState combine_contiguous(HashState hash_state, const unsigned char* first, size_t size) { hash_state.combine_contiguous_(hash_state.state_, first, size); return hash_state; } using HashState::HashStateBase::combine_contiguous; private: HashState() = default; template <typename T> static void CombineContiguousImpl(void* p, const unsigned char* first, size_t size) { T& state = *static_cast<T*>(p); state = T::combine_contiguous(std::move(state), first, size); } template <typename T> void Init(T* state) { state_ = state; combine_contiguous_ = &CombineContiguousImpl<T>; } // Do not erase an already erased state. void Init(HashState* state) { state_ = state->state_; combine_contiguous_ = state->combine_contiguous_; } void* state_; void (*combine_contiguous_)(void*, const unsigned char*, size_t); }; ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_HASH_HASH_H_