// // Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/debugging/internal/stack_consumption.h" #ifdef ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION #include <signal.h> #include <sys/mman.h> #include <unistd.h> #include <string.h> #include "absl/base/attributes.h" #include "absl/base/internal/raw_logging.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace debugging_internal { namespace { // This code requires that we know the direction in which the stack // grows. It is commonly believed that this can be detected by putting // a variable on the stack and then passing its address to a function // that compares the address of this variable to the address of a // variable on the function's own stack. However, this is unspecified // behavior in C++: If two pointers p and q of the same type point to // different objects that are not members of the same object or // elements of the same array or to different functions, or if only // one of them is null, the results of p<q, p>q, p<=q, and p>=q are // unspecified. Therefore, instead we hardcode the direction of the // stack on platforms we know about. #if defined(__i386__) || defined(__x86_64__) || defined(__ppc__) constexpr bool kStackGrowsDown = true; #else #error Need to define kStackGrowsDown #endif // To measure the stack footprint of some code, we create a signal handler // (for SIGUSR2 say) that exercises this code on an alternate stack. This // alternate stack is initialized to some known pattern (0x55, 0x55, 0x55, // ...). We then self-send this signal, and after the signal handler returns, // look at the alternate stack buffer to see what portion has been touched. // // This trick gives us the the stack footprint of the signal handler. But the // signal handler, even before the code for it is exercised, consumes some // stack already. We however only want the stack usage of the code inside the // signal handler. To measure this accurately, we install two signal handlers: // one that does nothing and just returns, and the user-provided signal // handler. The difference between the stack consumption of these two signals // handlers should give us the stack foorprint of interest. void EmptySignalHandler(int) {} // This is arbitrary value, and could be increase further, at the cost of // memset()ting it all to known sentinel value. constexpr int kAlternateStackSize = 64 << 10; // 64KiB constexpr int kSafetyMargin = 32; constexpr char kAlternateStackFillValue = 0x55; // These helper functions look at the alternate stack buffer, and figure // out what portion of this buffer has been touched - this is the stack // consumption of the signal handler running on this alternate stack. // This function will return -1 if the alternate stack buffer has not been // touched. It will abort the program if the buffer has overflowed or is about // to overflow. int GetStackConsumption(const void* const altstack) { const char* begin; int increment; if (kStackGrowsDown) { begin = reinterpret_cast<const char*>(altstack); increment = 1; } else { begin = reinterpret_cast<const char*>(altstack) + kAlternateStackSize - 1; increment = -1; } for (int usage_count = kAlternateStackSize; usage_count > 0; --usage_count) { if (*begin != kAlternateStackFillValue) { ABSL_RAW_CHECK(usage_count <= kAlternateStackSize - kSafetyMargin, "Buffer has overflowed or is about to overflow"); return usage_count; } begin += increment; } ABSL_RAW_LOG(FATAL, "Unreachable code"); return -1; } } // namespace int GetSignalHandlerStackConsumption(void (*signal_handler)(int)) { // The alt-signal-stack cannot be heap allocated because there is a // bug in glibc-2.2 where some signal handler setup code looks at the // current stack pointer to figure out what thread is currently running. // Therefore, the alternate stack must be allocated from the main stack // itself. void* altstack = mmap(nullptr, kAlternateStackSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); ABSL_RAW_CHECK(altstack != MAP_FAILED, "mmap() failed"); // Set up the alt-signal-stack (and save the older one). stack_t sigstk; memset(&sigstk, 0, sizeof(sigstk)); sigstk.ss_sp = altstack; sigstk.ss_size = kAlternateStackSize; sigstk.ss_flags = 0; stack_t old_sigstk; memset(&old_sigstk, 0, sizeof(old_sigstk)); ABSL_RAW_CHECK(sigaltstack(&sigstk, &old_sigstk) == 0, "sigaltstack() failed"); // Set up SIGUSR1 and SIGUSR2 signal handlers (and save the older ones). struct sigaction sa; memset(&sa, 0, sizeof(sa)); struct sigaction old_sa1, old_sa2; sigemptyset(&sa.sa_mask); sa.sa_flags = SA_ONSTACK; // SIGUSR1 maps to EmptySignalHandler. sa.sa_handler = EmptySignalHandler; ABSL_RAW_CHECK(sigaction(SIGUSR1, &sa, &old_sa1) == 0, "sigaction() failed"); // SIGUSR2 maps to signal_handler. sa.sa_handler = signal_handler; ABSL_RAW_CHECK(sigaction(SIGUSR2, &sa, &old_sa2) == 0, "sigaction() failed"); // Send SIGUSR1 signal and measure the stack consumption of the empty // signal handler. // The first signal might use more stack space. Run once and ignore the // results to get that out of the way. ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed"); memset(altstack, kAlternateStackFillValue, kAlternateStackSize); ABSL_RAW_CHECK(kill(getpid(), SIGUSR1) == 0, "kill() failed"); int base_stack_consumption = GetStackConsumption(altstack); // Send SIGUSR2 signal and measure the stack consumption of signal_handler. ABSL_RAW_CHECK(kill(getpid(), SIGUSR2) == 0, "kill() failed"); int signal_handler_stack_consumption = GetStackConsumption(altstack); // Now restore the old alt-signal-stack and signal handlers. if (old_sigstk.ss_sp == nullptr && old_sigstk.ss_size == 0 && (old_sigstk.ss_flags & SS_DISABLE)) { // https://git.musl-libc.org/cgit/musl/commit/src/signal/sigaltstack.c?id=7829f42a2c8944555439380498ab8b924d0f2070 // The original stack has ss_size==0 and ss_flags==SS_DISABLE, but some // versions of musl have a bug that rejects ss_size==0. Work around this by // setting ss_size to MINSIGSTKSZ, which should be ignored by the kernel // when SS_DISABLE is set. old_sigstk.ss_size = MINSIGSTKSZ; } ABSL_RAW_CHECK(sigaltstack(&old_sigstk, nullptr) == 0, "sigaltstack() failed"); ABSL_RAW_CHECK(sigaction(SIGUSR1, &old_sa1, nullptr) == 0, "sigaction() failed"); ABSL_RAW_CHECK(sigaction(SIGUSR2, &old_sa2, nullptr) == 0, "sigaction() failed"); ABSL_RAW_CHECK(munmap(altstack, kAlternateStackSize) == 0, "munmap() failed"); if (signal_handler_stack_consumption != -1 && base_stack_consumption != -1) { return signal_handler_stack_consumption - base_stack_consumption; } return -1; } } // namespace debugging_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_INTERNAL_HAVE_DEBUGGING_STACK_CONSUMPTION