// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // An open-addressing // hashtable with quadratic probing. // // This is a low level hashtable on top of which different interfaces can be // implemented, like flat_hash_set, node_hash_set, string_hash_set, etc. // // The table interface is similar to that of std::unordered_set. Notable // differences are that most member functions support heterogeneous keys when // BOTH the hash and eq functions are marked as transparent. They do so by // providing a typedef called `is_transparent`. // // When heterogeneous lookup is enabled, functions that take key_type act as if // they have an overload set like: // // iterator find(const key_type& key); // template <class K> // iterator find(const K& key); // // size_type erase(const key_type& key); // template <class K> // size_type erase(const K& key); // // std::pair<iterator, iterator> equal_range(const key_type& key); // template <class K> // std::pair<iterator, iterator> equal_range(const K& key); // // When heterogeneous lookup is disabled, only the explicit `key_type` overloads // exist. // // find() also supports passing the hash explicitly: // // iterator find(const key_type& key, size_t hash); // template <class U> // iterator find(const U& key, size_t hash); // // In addition the pointer to element and iterator stability guarantees are // weaker: all iterators and pointers are invalidated after a new element is // inserted. // // IMPLEMENTATION DETAILS // // The table stores elements inline in a slot array. In addition to the slot // array the table maintains some control state per slot. The extra state is one // byte per slot and stores empty or deleted marks, or alternatively 7 bits from // the hash of an occupied slot. The table is split into logical groups of // slots, like so: // // Group 1 Group 2 Group 3 // +---------------+---------------+---------------+ // | | | | | | | | | | | | | | | | | | | | | | | | | // +---------------+---------------+---------------+ // // On lookup the hash is split into two parts: // - H2: 7 bits (those stored in the control bytes) // - H1: the rest of the bits // The groups are probed using H1. For each group the slots are matched to H2 in // parallel. Because H2 is 7 bits (128 states) and the number of slots per group // is low (8 or 16) in almost all cases a match in H2 is also a lookup hit. // // On insert, once the right group is found (as in lookup), its slots are // filled in order. // // On erase a slot is cleared. In case the group did not have any empty slots // before the erase, the erased slot is marked as deleted. // // Groups without empty slots (but maybe with deleted slots) extend the probe // sequence. The probing algorithm is quadratic. Given N the number of groups, // the probing function for the i'th probe is: // // P(0) = H1 % N // // P(i) = (P(i - 1) + i) % N // // This probing function guarantees that after N probes, all the groups of the // table will be probed exactly once. #ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ #define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ #include <algorithm> #include <cmath> #include <cstdint> #include <cstring> #include <iterator> #include <limits> #include <memory> #include <tuple> #include <type_traits> #include <utility> #include "absl/base/internal/bits.h" #include "absl/base/internal/endian.h" #include "absl/base/optimization.h" #include "absl/base/port.h" #include "absl/container/internal/common.h" #include "absl/container/internal/compressed_tuple.h" #include "absl/container/internal/container_memory.h" #include "absl/container/internal/hash_policy_traits.h" #include "absl/container/internal/hashtable_debug_hooks.h" #include "absl/container/internal/hashtablez_sampler.h" #include "absl/container/internal/have_sse.h" #include "absl/container/internal/layout.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" #include "absl/utility/utility.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template <typename AllocType> void SwapAlloc(AllocType& lhs, AllocType& rhs, std::true_type /* propagate_on_container_swap */) { using std::swap; swap(lhs, rhs); } template <typename AllocType> void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/, std::false_type /* propagate_on_container_swap */) {} template <size_t Width> class probe_seq { public: probe_seq(size_t hash, size_t mask) { assert(((mask + 1) & mask) == 0 && "not a mask"); mask_ = mask; offset_ = hash & mask_; } size_t offset() const { return offset_; } size_t offset(size_t i) const { return (offset_ + i) & mask_; } void next() { index_ += Width; offset_ += index_; offset_ &= mask_; } // 0-based probe index. The i-th probe in the probe sequence. size_t index() const { return index_; } private: size_t mask_; size_t offset_; size_t index_ = 0; }; template <class ContainerKey, class Hash, class Eq> struct RequireUsableKey { template <class PassedKey, class... Args> std::pair< decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())), decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(), std::declval<const PassedKey&>()))>* operator()(const PassedKey&, const Args&...) const; }; template <class E, class Policy, class Hash, class Eq, class... Ts> struct IsDecomposable : std::false_type {}; template <class Policy, class Hash, class Eq, class... Ts> struct IsDecomposable< absl::void_t<decltype( Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(), std::declval<Ts>()...))>, Policy, Hash, Eq, Ts...> : std::true_type {}; // TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. template <class T> constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { using std::swap; return noexcept(swap(std::declval<T&>(), std::declval<T&>())); } template <class T> constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { return false; } template <typename T> int TrailingZeros(T x) { return sizeof(T) == 8 ? base_internal::CountTrailingZerosNonZero64( static_cast<uint64_t>(x)) : base_internal::CountTrailingZerosNonZero32( static_cast<uint32_t>(x)); } template <typename T> int LeadingZeros(T x) { return sizeof(T) == 8 ? base_internal::CountLeadingZeros64(static_cast<uint64_t>(x)) : base_internal::CountLeadingZeros32(static_cast<uint32_t>(x)); } // An abstraction over a bitmask. It provides an easy way to iterate through the // indexes of the set bits of a bitmask. When Shift=0 (platforms with SSE), // this is a true bitmask. On non-SSE, platforms the arithematic used to // emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as // either 0x00 or 0x80. // // For example: // for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2 // for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3 template <class T, int SignificantBits, int Shift = 0> class BitMask { static_assert(std::is_unsigned<T>::value, ""); static_assert(Shift == 0 || Shift == 3, ""); public: // These are useful for unit tests (gunit). using value_type = int; using iterator = BitMask; using const_iterator = BitMask; explicit BitMask(T mask) : mask_(mask) {} BitMask& operator++() { mask_ &= (mask_ - 1); return *this; } explicit operator bool() const { return mask_ != 0; } int operator*() const { return LowestBitSet(); } int LowestBitSet() const { return container_internal::TrailingZeros(mask_) >> Shift; } int HighestBitSet() const { return (sizeof(T) * CHAR_BIT - container_internal::LeadingZeros(mask_) - 1) >> Shift; } BitMask begin() const { return *this; } BitMask end() const { return BitMask(0); } int TrailingZeros() const { return container_internal::TrailingZeros(mask_) >> Shift; } int LeadingZeros() const { constexpr int total_significant_bits = SignificantBits << Shift; constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; return container_internal::LeadingZeros(mask_ << extra_bits) >> Shift; } private: friend bool operator==(const BitMask& a, const BitMask& b) { return a.mask_ == b.mask_; } friend bool operator!=(const BitMask& a, const BitMask& b) { return a.mask_ != b.mask_; } T mask_; }; using ctrl_t = signed char; using h2_t = uint8_t; // The values here are selected for maximum performance. See the static asserts // below for details. enum Ctrl : ctrl_t { kEmpty = -128, // 0b10000000 kDeleted = -2, // 0b11111110 kSentinel = -1, // 0b11111111 }; static_assert( kEmpty & kDeleted & kSentinel & 0x80, "Special markers need to have the MSB to make checking for them efficient"); static_assert(kEmpty < kSentinel && kDeleted < kSentinel, "kEmpty and kDeleted must be smaller than kSentinel to make the " "SIMD test of IsEmptyOrDeleted() efficient"); static_assert(kSentinel == -1, "kSentinel must be -1 to elide loading it from memory into SIMD " "registers (pcmpeqd xmm, xmm)"); static_assert(kEmpty == -128, "kEmpty must be -128 to make the SIMD check for its " "existence efficient (psignb xmm, xmm)"); static_assert(~kEmpty & ~kDeleted & kSentinel & 0x7F, "kEmpty and kDeleted must share an unset bit that is not shared " "by kSentinel to make the scalar test for MatchEmptyOrDeleted() " "efficient"); static_assert(kDeleted == -2, "kDeleted must be -2 to make the implementation of " "ConvertSpecialToEmptyAndFullToDeleted efficient"); // A single block of empty control bytes for tables without any slots allocated. // This enables removing a branch in the hot path of find(). inline ctrl_t* EmptyGroup() { alignas(16) static constexpr ctrl_t empty_group[] = { kSentinel, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty, kEmpty}; return const_cast<ctrl_t*>(empty_group); } // Mixes a randomly generated per-process seed with `hash` and `ctrl` to // randomize insertion order within groups. bool ShouldInsertBackwards(size_t hash, ctrl_t* ctrl); // Returns a hash seed. // // The seed consists of the ctrl_ pointer, which adds enough entropy to ensure // non-determinism of iteration order in most cases. inline size_t HashSeed(const ctrl_t* ctrl) { // The low bits of the pointer have little or no entropy because of // alignment. We shift the pointer to try to use higher entropy bits. A // good number seems to be 12 bits, because that aligns with page size. return reinterpret_cast<uintptr_t>(ctrl) >> 12; } inline size_t H1(size_t hash, const ctrl_t* ctrl) { return (hash >> 7) ^ HashSeed(ctrl); } inline ctrl_t H2(size_t hash) { return hash & 0x7F; } inline bool IsEmpty(ctrl_t c) { return c == kEmpty; } inline bool IsFull(ctrl_t c) { return c >= 0; } inline bool IsDeleted(ctrl_t c) { return c == kDeleted; } inline bool IsEmptyOrDeleted(ctrl_t c) { return c < kSentinel; } #if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 // https://github.com/abseil/abseil-cpp/issues/209 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 // _mm_cmpgt_epi8 is broken under GCC with -funsigned-char // Work around this by using the portable implementation of Group // when using -funsigned-char under GCC. inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) { #if defined(__GNUC__) && !defined(__clang__) if (std::is_unsigned<char>::value) { const __m128i mask = _mm_set1_epi8(0x80); const __m128i diff = _mm_subs_epi8(b, a); return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask); } #endif return _mm_cmpgt_epi8(a, b); } struct GroupSse2Impl { static constexpr size_t kWidth = 16; // the number of slots per group explicit GroupSse2Impl(const ctrl_t* pos) { ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos)); } // Returns a bitmask representing the positions of slots that match hash. BitMask<uint32_t, kWidth> Match(h2_t hash) const { auto match = _mm_set1_epi8(hash); return BitMask<uint32_t, kWidth>( _mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl))); } // Returns a bitmask representing the positions of empty slots. BitMask<uint32_t, kWidth> MatchEmpty() const { #if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 // This only works because kEmpty is -128. return BitMask<uint32_t, kWidth>( _mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl))); #else return Match(static_cast<h2_t>(kEmpty)); #endif } // Returns a bitmask representing the positions of empty or deleted slots. BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const { auto special = _mm_set1_epi8(kSentinel); return BitMask<uint32_t, kWidth>( _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl))); } // Returns the number of trailing empty or deleted elements in the group. uint32_t CountLeadingEmptyOrDeleted() const { auto special = _mm_set1_epi8(kSentinel); return TrailingZeros( _mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1); } void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { auto msbs = _mm_set1_epi8(static_cast<char>(-128)); auto x126 = _mm_set1_epi8(126); #if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3 auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); #else auto zero = _mm_setzero_si128(); auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl); auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126)); #endif _mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res); } __m128i ctrl; }; #endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 struct GroupPortableImpl { static constexpr size_t kWidth = 8; explicit GroupPortableImpl(const ctrl_t* pos) : ctrl(little_endian::Load64(pos)) {} BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { // For the technique, see: // http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord // (Determine if a word has a byte equal to n). // // Caveat: there are false positives but: // - they only occur if there is a real match // - they never occur on kEmpty, kDeleted, kSentinel // - they will be handled gracefully by subsequent checks in code // // Example: // v = 0x1716151413121110 // hash = 0x12 // retval = (v - lsbs) & ~v & msbs = 0x0000000080800000 constexpr uint64_t msbs = 0x8080808080808080ULL; constexpr uint64_t lsbs = 0x0101010101010101ULL; auto x = ctrl ^ (lsbs * hash); return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs); } BitMask<uint64_t, kWidth, 3> MatchEmpty() const { constexpr uint64_t msbs = 0x8080808080808080ULL; return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs); } BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const { constexpr uint64_t msbs = 0x8080808080808080ULL; return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs); } uint32_t CountLeadingEmptyOrDeleted() const { constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL; return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3; } void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { constexpr uint64_t msbs = 0x8080808080808080ULL; constexpr uint64_t lsbs = 0x0101010101010101ULL; auto x = ctrl & msbs; auto res = (~x + (x >> 7)) & ~lsbs; little_endian::Store64(dst, res); } uint64_t ctrl; }; #if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 using Group = GroupSse2Impl; #else using Group = GroupPortableImpl; #endif template <class Policy, class Hash, class Eq, class Alloc> class raw_hash_set; inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } // PRECONDITION: // IsValidCapacity(capacity) // ctrl[capacity] == kSentinel // ctrl[i] != kSentinel for all i < capacity // Applies mapping for every byte in ctrl: // DELETED -> EMPTY // EMPTY -> EMPTY // FULL -> DELETED void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); // Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1. inline size_t NormalizeCapacity(size_t n) { return n ? ~size_t{} >> LeadingZeros(n) : 1; } // We use 7/8th as maximum load factor. // For 16-wide groups, that gives an average of two empty slots per group. inline size_t CapacityToGrowth(size_t capacity) { assert(IsValidCapacity(capacity)); // `capacity*7/8` if (Group::kWidth == 8 && capacity == 7) { // x-x/8 does not work when x==7. return 6; } return capacity - capacity / 8; } // From desired "growth" to a lowerbound of the necessary capacity. // Might not be a valid one and required NormalizeCapacity(). inline size_t GrowthToLowerboundCapacity(size_t growth) { // `growth*8/7` if (Group::kWidth == 8 && growth == 7) { // x+(x-1)/7 does not work when x==7. return 8; } return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7); } inline void AssertIsFull(ctrl_t* ctrl) { ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) && "Invalid operation on iterator. The element might have " "been erased, or the table might have rehashed."); } inline void AssertIsValid(ctrl_t* ctrl) { ABSL_HARDENING_ASSERT((ctrl == nullptr || IsFull(*ctrl)) && "Invalid operation on iterator. The element might have " "been erased, or the table might have rehashed."); } struct FindInfo { size_t offset; size_t probe_length; }; // The representation of the object has two modes: // - small: For capacities < kWidth-1 // - large: For the rest. // // Differences: // - In small mode we are able to use the whole capacity. The extra control // bytes give us at least one "empty" control byte to stop the iteration. // This is important to make 1 a valid capacity. // // - In small mode only the first `capacity()` control bytes after the // sentinel are valid. The rest contain dummy kEmpty values that do not // represent a real slot. This is important to take into account on // find_first_non_full(), where we never try ShouldInsertBackwards() for // small tables. inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } inline probe_seq<Group::kWidth> probe(ctrl_t* ctrl, size_t hash, size_t capacity) { return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); } // Probes the raw_hash_set with the probe sequence for hash and returns the // pointer to the first empty or deleted slot. // NOTE: this function must work with tables having both kEmpty and kDelete // in one group. Such tables appears during drop_deletes_without_resize. // // This function is very useful when insertions happen and: // - the input is already a set // - there are enough slots // - the element with the hash is not in the table inline FindInfo find_first_non_full(ctrl_t* ctrl, size_t hash, size_t capacity) { auto seq = probe(ctrl, hash, capacity); while (true) { Group g{ctrl + seq.offset()}; auto mask = g.MatchEmptyOrDeleted(); if (mask) { #if !defined(NDEBUG) // We want to add entropy even when ASLR is not enabled. // In debug build we will randomly insert in either the front or back of // the group. // TODO(kfm,sbenza): revisit after we do unconditional mixing if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) { return {seq.offset(mask.HighestBitSet()), seq.index()}; } #endif return {seq.offset(mask.LowestBitSet()), seq.index()}; } seq.next(); assert(seq.index() < capacity && "full table!"); } } // Policy: a policy defines how to perform different operations on // the slots of the hashtable (see hash_policy_traits.h for the full interface // of policy). // // Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The // functor should accept a key and return size_t as hash. For best performance // it is important that the hash function provides high entropy across all bits // of the hash. // // Eq: a (possibly polymorphic) functor that compares two keys for equality. It // should accept two (of possibly different type) keys and return a bool: true // if they are equal, false if they are not. If two keys compare equal, then // their hash values as defined by Hash MUST be equal. // // Allocator: an Allocator // [https://en.cppreference.com/w/cpp/named_req/Allocator] with which // the storage of the hashtable will be allocated and the elements will be // constructed and destroyed. template <class Policy, class Hash, class Eq, class Alloc> class raw_hash_set { using PolicyTraits = hash_policy_traits<Policy>; using KeyArgImpl = KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>; public: using init_type = typename PolicyTraits::init_type; using key_type = typename PolicyTraits::key_type; // TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user // code fixes! using slot_type = typename PolicyTraits::slot_type; using allocator_type = Alloc; using size_type = size_t; using difference_type = ptrdiff_t; using hasher = Hash; using key_equal = Eq; using policy_type = Policy; using value_type = typename PolicyTraits::value_type; using reference = value_type&; using const_reference = const value_type&; using pointer = typename absl::allocator_traits< allocator_type>::template rebind_traits<value_type>::pointer; using const_pointer = typename absl::allocator_traits< allocator_type>::template rebind_traits<value_type>::const_pointer; // Alias used for heterogeneous lookup functions. // `key_arg<K>` evaluates to `K` when the functors are transparent and to // `key_type` otherwise. It permits template argument deduction on `K` for the // transparent case. template <class K> using key_arg = typename KeyArgImpl::template type<K, key_type>; private: // Give an early error when key_type is not hashable/eq. auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k)); auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k)); using Layout = absl::container_internal::Layout<ctrl_t, slot_type>; static Layout MakeLayout(size_t capacity) { assert(IsValidCapacity(capacity)); return Layout(capacity + Group::kWidth + 1, capacity); } using AllocTraits = absl::allocator_traits<allocator_type>; using SlotAlloc = typename absl::allocator_traits< allocator_type>::template rebind_alloc<slot_type>; using SlotAllocTraits = typename absl::allocator_traits< allocator_type>::template rebind_traits<slot_type>; static_assert(std::is_lvalue_reference<reference>::value, "Policy::element() must return a reference"); template <typename T> struct SameAsElementReference : std::is_same<typename std::remove_cv< typename std::remove_reference<reference>::type>::type, typename std::remove_cv< typename std::remove_reference<T>::type>::type> {}; // An enabler for insert(T&&): T must be convertible to init_type or be the // same as [cv] value_type [ref]. // Note: we separate SameAsElementReference into its own type to avoid using // reference unless we need to. MSVC doesn't seem to like it in some // cases. template <class T> using RequiresInsertable = typename std::enable_if< absl::disjunction<std::is_convertible<T, init_type>, SameAsElementReference<T>>::value, int>::type; // RequiresNotInit is a workaround for gcc prior to 7.1. // See https://godbolt.org/g/Y4xsUh. template <class T> using RequiresNotInit = typename std::enable_if<!std::is_same<T, init_type>::value, int>::type; template <class... Ts> using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>; public: static_assert(std::is_same<pointer, value_type*>::value, "Allocators with custom pointer types are not supported"); static_assert(std::is_same<const_pointer, const value_type*>::value, "Allocators with custom pointer types are not supported"); class iterator { friend class raw_hash_set; public: using iterator_category = std::forward_iterator_tag; using value_type = typename raw_hash_set::value_type; using reference = absl::conditional_t<PolicyTraits::constant_iterators::value, const value_type&, value_type&>; using pointer = absl::remove_reference_t<reference>*; using difference_type = typename raw_hash_set::difference_type; iterator() {} // PRECONDITION: not an end() iterator. reference operator*() const { AssertIsFull(ctrl_); return PolicyTraits::element(slot_); } // PRECONDITION: not an end() iterator. pointer operator->() const { return &operator*(); } // PRECONDITION: not an end() iterator. iterator& operator++() { AssertIsFull(ctrl_); ++ctrl_; ++slot_; skip_empty_or_deleted(); return *this; } // PRECONDITION: not an end() iterator. iterator operator++(int) { auto tmp = *this; ++*this; return tmp; } friend bool operator==(const iterator& a, const iterator& b) { AssertIsValid(a.ctrl_); AssertIsValid(b.ctrl_); return a.ctrl_ == b.ctrl_; } friend bool operator!=(const iterator& a, const iterator& b) { return !(a == b); } private: iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) { // This assumption helps the compiler know that any non-end iterator is // not equal to any end iterator. ABSL_INTERNAL_ASSUME(ctrl != nullptr); } void skip_empty_or_deleted() { while (IsEmptyOrDeleted(*ctrl_)) { uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted(); ctrl_ += shift; slot_ += shift; } if (ABSL_PREDICT_FALSE(*ctrl_ == kSentinel)) ctrl_ = nullptr; } ctrl_t* ctrl_ = nullptr; // To avoid uninitialized member warnings, put slot_ in an anonymous union. // The member is not initialized on singleton and end iterators. union { slot_type* slot_; }; }; class const_iterator { friend class raw_hash_set; public: using iterator_category = typename iterator::iterator_category; using value_type = typename raw_hash_set::value_type; using reference = typename raw_hash_set::const_reference; using pointer = typename raw_hash_set::const_pointer; using difference_type = typename raw_hash_set::difference_type; const_iterator() {} // Implicit construction from iterator. const_iterator(iterator i) : inner_(std::move(i)) {} reference operator*() const { return *inner_; } pointer operator->() const { return inner_.operator->(); } const_iterator& operator++() { ++inner_; return *this; } const_iterator operator++(int) { return inner_++; } friend bool operator==(const const_iterator& a, const const_iterator& b) { return a.inner_ == b.inner_; } friend bool operator!=(const const_iterator& a, const const_iterator& b) { return !(a == b); } private: const_iterator(const ctrl_t* ctrl, const slot_type* slot) : inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {} iterator inner_; }; using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>; using insert_return_type = InsertReturnType<iterator, node_type>; raw_hash_set() noexcept( std::is_nothrow_default_constructible<hasher>::value&& std::is_nothrow_default_constructible<key_equal>::value&& std::is_nothrow_default_constructible<allocator_type>::value) {} explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : ctrl_(EmptyGroup()), settings_(0, hash, eq, alloc) { if (bucket_count) { capacity_ = NormalizeCapacity(bucket_count); initialize_slots(); } } raw_hash_set(size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(bucket_count, hash, key_equal(), alloc) {} raw_hash_set(size_t bucket_count, const allocator_type& alloc) : raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {} explicit raw_hash_set(const allocator_type& alloc) : raw_hash_set(0, hasher(), key_equal(), alloc) {} template <class InputIter> raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : raw_hash_set(bucket_count, hash, eq, alloc) { insert(first, last); } template <class InputIter> raw_hash_set(InputIter first, InputIter last, size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {} template <class InputIter> raw_hash_set(InputIter first, InputIter last, size_t bucket_count, const allocator_type& alloc) : raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {} template <class InputIter> raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc) : raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {} // Instead of accepting std::initializer_list<value_type> as the first // argument like std::unordered_set<value_type> does, we have two overloads // that accept std::initializer_list<T> and std::initializer_list<init_type>. // This is advantageous for performance. // // // Turns {"abc", "def"} into std::initializer_list<std::string>, then // // copies the strings into the set. // std::unordered_set<std::string> s = {"abc", "def"}; // // // Turns {"abc", "def"} into std::initializer_list<const char*>, then // // copies the strings into the set. // absl::flat_hash_set<std::string> s = {"abc", "def"}; // // The same trick is used in insert(). // // The enabler is necessary to prevent this constructor from triggering where // the copy constructor is meant to be called. // // absl::flat_hash_set<int> a, b{a}; // // RequiresNotInit<T> is a workaround for gcc prior to 7.1. template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0, const hasher& hash = hasher(), const key_equal& eq = key_equal(), const allocator_type& alloc = allocator_type()) : raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> raw_hash_set(std::initializer_list<T> init, size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, const hasher& hash, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> raw_hash_set(std::initializer_list<T> init, size_t bucket_count, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, const allocator_type& alloc) : raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc) : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} raw_hash_set(std::initializer_list<init_type> init, const allocator_type& alloc) : raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} raw_hash_set(const raw_hash_set& that) : raw_hash_set(that, AllocTraits::select_on_container_copy_construction( that.alloc_ref())) {} raw_hash_set(const raw_hash_set& that, const allocator_type& a) : raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) { reserve(that.size()); // Because the table is guaranteed to be empty, we can do something faster // than a full `insert`. for (const auto& v : that) { const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); auto target = find_first_non_full(ctrl_, hash, capacity_); set_ctrl(target.offset, H2(hash)); emplace_at(target.offset, v); infoz_.RecordInsert(hash, target.probe_length); } size_ = that.size(); growth_left() -= that.size(); } raw_hash_set(raw_hash_set&& that) noexcept( std::is_nothrow_copy_constructible<hasher>::value&& std::is_nothrow_copy_constructible<key_equal>::value&& std::is_nothrow_copy_constructible<allocator_type>::value) : ctrl_(absl::exchange(that.ctrl_, EmptyGroup())), slots_(absl::exchange(that.slots_, nullptr)), size_(absl::exchange(that.size_, 0)), capacity_(absl::exchange(that.capacity_, 0)), infoz_(absl::exchange(that.infoz_, HashtablezInfoHandle())), // Hash, equality and allocator are copied instead of moved because // `that` must be left valid. If Hash is std::function<Key>, moving it // would create a nullptr functor that cannot be called. settings_(that.settings_) { // growth_left was copied above, reset the one from `that`. that.growth_left() = 0; } raw_hash_set(raw_hash_set&& that, const allocator_type& a) : ctrl_(EmptyGroup()), slots_(nullptr), size_(0), capacity_(0), settings_(0, that.hash_ref(), that.eq_ref(), a) { if (a == that.alloc_ref()) { std::swap(ctrl_, that.ctrl_); std::swap(slots_, that.slots_); std::swap(size_, that.size_); std::swap(capacity_, that.capacity_); std::swap(growth_left(), that.growth_left()); std::swap(infoz_, that.infoz_); } else { reserve(that.size()); // Note: this will copy elements of dense_set and unordered_set instead of // moving them. This can be fixed if it ever becomes an issue. for (auto& elem : that) insert(std::move(elem)); } } raw_hash_set& operator=(const raw_hash_set& that) { raw_hash_set tmp(that, AllocTraits::propagate_on_container_copy_assignment::value ? that.alloc_ref() : alloc_ref()); swap(tmp); return *this; } raw_hash_set& operator=(raw_hash_set&& that) noexcept( absl::allocator_traits<allocator_type>::is_always_equal::value&& std::is_nothrow_move_assignable<hasher>::value&& std::is_nothrow_move_assignable<key_equal>::value) { // TODO(sbenza): We should only use the operations from the noexcept clause // to make sure we actually adhere to that contract. return move_assign( std::move(that), typename AllocTraits::propagate_on_container_move_assignment()); } ~raw_hash_set() { destroy_slots(); } iterator begin() { auto it = iterator_at(0); it.skip_empty_or_deleted(); return it; } iterator end() { return {}; } const_iterator begin() const { return const_cast<raw_hash_set*>(this)->begin(); } const_iterator end() const { return {}; } const_iterator cbegin() const { return begin(); } const_iterator cend() const { return end(); } bool empty() const { return !size(); } size_t size() const { return size_; } size_t capacity() const { return capacity_; } size_t max_size() const { return (std::numeric_limits<size_t>::max)(); } ABSL_ATTRIBUTE_REINITIALIZES void clear() { // Iterating over this container is O(bucket_count()). When bucket_count() // is much greater than size(), iteration becomes prohibitively expensive. // For clear() it is more important to reuse the allocated array when the // container is small because allocation takes comparatively long time // compared to destruction of the elements of the container. So we pick the // largest bucket_count() threshold for which iteration is still fast and // past that we simply deallocate the array. if (capacity_ > 127) { destroy_slots(); } else if (capacity_) { for (size_t i = 0; i != capacity_; ++i) { if (IsFull(ctrl_[i])) { PolicyTraits::destroy(&alloc_ref(), slots_ + i); } } size_ = 0; reset_ctrl(); reset_growth_left(); } assert(empty()); infoz_.RecordStorageChanged(0, capacity_); } // This overload kicks in when the argument is an rvalue of insertable and // decomposable type other than init_type. // // flat_hash_map<std::string, int> m; // m.insert(std::make_pair("abc", 42)); // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc // bug. template <class T, RequiresInsertable<T> = 0, class T2 = T, typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, T* = nullptr> std::pair<iterator, bool> insert(T&& value) { return emplace(std::forward<T>(value)); } // This overload kicks in when the argument is a bitfield or an lvalue of // insertable and decomposable type. // // union { int n : 1; }; // flat_hash_set<int> s; // s.insert(n); // // flat_hash_set<std::string> s; // const char* p = "hello"; // s.insert(p); // // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace // RequiresInsertable<T> with RequiresInsertable<const T&>. // We are hitting this bug: https://godbolt.org/g/1Vht4f. template < class T, RequiresInsertable<T> = 0, typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> std::pair<iterator, bool> insert(const T& value) { return emplace(value); } // This overload kicks in when the argument is an rvalue of init_type. Its // purpose is to handle brace-init-list arguments. // // flat_hash_map<std::string, int> s; // s.insert({"abc", 42}); std::pair<iterator, bool> insert(init_type&& value) { return emplace(std::move(value)); } // TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc // bug. template <class T, RequiresInsertable<T> = 0, class T2 = T, typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, T* = nullptr> iterator insert(const_iterator, T&& value) { return insert(std::forward<T>(value)).first; } // TODO(romanp): Once we stop supporting gcc 5.1 and below, replace // RequiresInsertable<T> with RequiresInsertable<const T&>. // We are hitting this bug: https://godbolt.org/g/1Vht4f. template < class T, RequiresInsertable<T> = 0, typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> iterator insert(const_iterator, const T& value) { return insert(value).first; } iterator insert(const_iterator, init_type&& value) { return insert(std::move(value)).first; } template <class InputIt> void insert(InputIt first, InputIt last) { for (; first != last; ++first) insert(*first); } template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0> void insert(std::initializer_list<T> ilist) { insert(ilist.begin(), ilist.end()); } void insert(std::initializer_list<init_type> ilist) { insert(ilist.begin(), ilist.end()); } insert_return_type insert(node_type&& node) { if (!node) return {end(), false, node_type()}; const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node)); auto res = PolicyTraits::apply( InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))}, elem); if (res.second) { CommonAccess::Reset(&node); return {res.first, true, node_type()}; } else { return {res.first, false, std::move(node)}; } } iterator insert(const_iterator, node_type&& node) { auto res = insert(std::move(node)); node = std::move(res.node); return res.position; } // This overload kicks in if we can deduce the key from args. This enables us // to avoid constructing value_type if an entry with the same key already // exists. // // For example: // // flat_hash_map<std::string, std::string> m = {{"abc", "def"}}; // // Creates no std::string copies and makes no heap allocations. // m.emplace("abc", "xyz"); template <class... Args, typename std::enable_if< IsDecomposable<Args...>::value, int>::type = 0> std::pair<iterator, bool> emplace(Args&&... args) { return PolicyTraits::apply(EmplaceDecomposable{*this}, std::forward<Args>(args)...); } // This overload kicks in if we cannot deduce the key from args. It constructs // value_type unconditionally and then either moves it into the table or // destroys. template <class... Args, typename std::enable_if< !IsDecomposable<Args...>::value, int>::type = 0> std::pair<iterator, bool> emplace(Args&&... args) { alignas(slot_type) unsigned char raw[sizeof(slot_type)]; slot_type* slot = reinterpret_cast<slot_type*>(&raw); PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...); const auto& elem = PolicyTraits::element(slot); return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem); } template <class... Args> iterator emplace_hint(const_iterator, Args&&... args) { return emplace(std::forward<Args>(args)...).first; } // Extension API: support for lazy emplace. // // Looks up key in the table. If found, returns the iterator to the element. // Otherwise calls `f` with one argument of type `raw_hash_set::constructor`. // // `f` must abide by several restrictions: // - it MUST call `raw_hash_set::constructor` with arguments as if a // `raw_hash_set::value_type` is constructed, // - it MUST NOT access the container before the call to // `raw_hash_set::constructor`, and // - it MUST NOT erase the lazily emplaced element. // Doing any of these is undefined behavior. // // For example: // // std::unordered_set<ArenaString> s; // // Makes ArenaStr even if "abc" is in the map. // s.insert(ArenaString(&arena, "abc")); // // flat_hash_set<ArenaStr> s; // // Makes ArenaStr only if "abc" is not in the map. // s.lazy_emplace("abc", [&](const constructor& ctor) { // ctor(&arena, "abc"); // }); // // WARNING: This API is currently experimental. If there is a way to implement // the same thing with the rest of the API, prefer that. class constructor { friend class raw_hash_set; public: template <class... Args> void operator()(Args&&... args) const { assert(*slot_); PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...); *slot_ = nullptr; } private: constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {} allocator_type* alloc_; slot_type** slot_; }; template <class K = key_type, class F> iterator lazy_emplace(const key_arg<K>& key, F&& f) { auto res = find_or_prepare_insert(key); if (res.second) { slot_type* slot = slots_ + res.first; std::forward<F>(f)(constructor(&alloc_ref(), &slot)); assert(!slot); } return iterator_at(res.first); } // Extension API: support for heterogeneous keys. // // std::unordered_set<std::string> s; // // Turns "abc" into std::string. // s.erase("abc"); // // flat_hash_set<std::string> s; // // Uses "abc" directly without copying it into std::string. // s.erase("abc"); template <class K = key_type> size_type erase(const key_arg<K>& key) { auto it = find(key); if (it == end()) return 0; erase(it); return 1; } // Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`, // this method returns void to reduce algorithmic complexity to O(1). The // iterator is invalidated, so any increment should be done before calling // erase. In order to erase while iterating across a map, use the following // idiom (which also works for standard containers): // // for (auto it = m.begin(), end = m.end(); it != end;) { // // `erase()` will invalidate `it`, so advance `it` first. // auto copy_it = it++; // if (<pred>) { // m.erase(copy_it); // } // } void erase(const_iterator cit) { erase(cit.inner_); } // This overload is necessary because otherwise erase<K>(const K&) would be // a better match if non-const iterator is passed as an argument. void erase(iterator it) { AssertIsFull(it.ctrl_); PolicyTraits::destroy(&alloc_ref(), it.slot_); erase_meta_only(it); } iterator erase(const_iterator first, const_iterator last) { while (first != last) { erase(first++); } return last.inner_; } // Moves elements from `src` into `this`. // If the element already exists in `this`, it is left unmodified in `src`. template <typename H, typename E> void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT assert(this != &src); for (auto it = src.begin(), e = src.end(); it != e;) { auto next = std::next(it); if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)}, PolicyTraits::element(it.slot_)) .second) { src.erase_meta_only(it); } it = next; } } template <typename H, typename E> void merge(raw_hash_set<Policy, H, E, Alloc>&& src) { merge(src); } node_type extract(const_iterator position) { AssertIsFull(position.inner_.ctrl_); auto node = CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_); erase_meta_only(position); return node; } template < class K = key_type, typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0> node_type extract(const key_arg<K>& key) { auto it = find(key); return it == end() ? node_type() : extract(const_iterator{it}); } void swap(raw_hash_set& that) noexcept( IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() && IsNoThrowSwappable<allocator_type>( typename AllocTraits::propagate_on_container_swap{})) { using std::swap; swap(ctrl_, that.ctrl_); swap(slots_, that.slots_); swap(size_, that.size_); swap(capacity_, that.capacity_); swap(growth_left(), that.growth_left()); swap(hash_ref(), that.hash_ref()); swap(eq_ref(), that.eq_ref()); swap(infoz_, that.infoz_); SwapAlloc(alloc_ref(), that.alloc_ref(), typename AllocTraits::propagate_on_container_swap{}); } void rehash(size_t n) { if (n == 0 && capacity_ == 0) return; if (n == 0 && size_ == 0) { destroy_slots(); infoz_.RecordStorageChanged(0, 0); return; } // bitor is a faster way of doing `max` here. We will round up to the next // power-of-2-minus-1, so bitor is good enough. auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size())); // n == 0 unconditionally rehashes as per the standard. if (n == 0 || m > capacity_) { resize(m); } } void reserve(size_t n) { size_t m = GrowthToLowerboundCapacity(n); if (m > capacity_) { resize(NormalizeCapacity(m)); } } // Extension API: support for heterogeneous keys. // // std::unordered_set<std::string> s; // // Turns "abc" into std::string. // s.count("abc"); // // ch_set<std::string> s; // // Uses "abc" directly without copying it into std::string. // s.count("abc"); template <class K = key_type> size_t count(const key_arg<K>& key) const { return find(key) == end() ? 0 : 1; } // Issues CPU prefetch instructions for the memory needed to find or insert // a key. Like all lookup functions, this support heterogeneous keys. // // NOTE: This is a very low level operation and should not be used without // specific benchmarks indicating its importance. template <class K = key_type> void prefetch(const key_arg<K>& key) const { (void)key; #if defined(__GNUC__) auto seq = probe(ctrl_, hash_ref()(key), capacity_); __builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset())); __builtin_prefetch(static_cast<const void*>(slots_ + seq.offset())); #endif // __GNUC__ } // The API of find() has two extensions. // // 1. The hash can be passed by the user. It must be equal to the hash of the // key. // // 2. The type of the key argument doesn't have to be key_type. This is so // called heterogeneous key support. template <class K = key_type> iterator find(const key_arg<K>& key, size_t hash) { auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { if (ABSL_PREDICT_TRUE(PolicyTraits::apply( EqualElement<K>{key, eq_ref()}, PolicyTraits::element(slots_ + seq.offset(i))))) return iterator_at(seq.offset(i)); } if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end(); seq.next(); assert(seq.index() < capacity_ && "full table!"); } } template <class K = key_type> iterator find(const key_arg<K>& key) { return find(key, hash_ref()(key)); } template <class K = key_type> const_iterator find(const key_arg<K>& key, size_t hash) const { return const_cast<raw_hash_set*>(this)->find(key, hash); } template <class K = key_type> const_iterator find(const key_arg<K>& key) const { return find(key, hash_ref()(key)); } template <class K = key_type> bool contains(const key_arg<K>& key) const { return find(key) != end(); } template <class K = key_type> std::pair<iterator, iterator> equal_range(const key_arg<K>& key) { auto it = find(key); if (it != end()) return {it, std::next(it)}; return {it, it}; } template <class K = key_type> std::pair<const_iterator, const_iterator> equal_range( const key_arg<K>& key) const { auto it = find(key); if (it != end()) return {it, std::next(it)}; return {it, it}; } size_t bucket_count() const { return capacity_; } float load_factor() const { return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0; } float max_load_factor() const { return 1.0f; } void max_load_factor(float) { // Does nothing. } hasher hash_function() const { return hash_ref(); } key_equal key_eq() const { return eq_ref(); } allocator_type get_allocator() const { return alloc_ref(); } friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) { if (a.size() != b.size()) return false; const raw_hash_set* outer = &a; const raw_hash_set* inner = &b; if (outer->capacity() > inner->capacity()) std::swap(outer, inner); for (const value_type& elem : *outer) if (!inner->has_element(elem)) return false; return true; } friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) { return !(a == b); } friend void swap(raw_hash_set& a, raw_hash_set& b) noexcept(noexcept(a.swap(b))) { a.swap(b); } private: template <class Container, typename Enabler> friend struct absl::container_internal::hashtable_debug_internal:: HashtableDebugAccess; struct FindElement { template <class K, class... Args> const_iterator operator()(const K& key, Args&&...) const { return s.find(key); } const raw_hash_set& s; }; struct HashElement { template <class K, class... Args> size_t operator()(const K& key, Args&&...) const { return h(key); } const hasher& h; }; template <class K1> struct EqualElement { template <class K2, class... Args> bool operator()(const K2& lhs, Args&&...) const { return eq(lhs, rhs); } const K1& rhs; const key_equal& eq; }; struct EmplaceDecomposable { template <class K, class... Args> std::pair<iterator, bool> operator()(const K& key, Args&&... args) const { auto res = s.find_or_prepare_insert(key); if (res.second) { s.emplace_at(res.first, std::forward<Args>(args)...); } return {s.iterator_at(res.first), res.second}; } raw_hash_set& s; }; template <bool do_destroy> struct InsertSlot { template <class K, class... Args> std::pair<iterator, bool> operator()(const K& key, Args&&...) && { auto res = s.find_or_prepare_insert(key); if (res.second) { PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot); } else if (do_destroy) { PolicyTraits::destroy(&s.alloc_ref(), &slot); } return {s.iterator_at(res.first), res.second}; } raw_hash_set& s; // Constructed slot. Either moved into place or destroyed. slot_type&& slot; }; // "erases" the object from the container, except that it doesn't actually // destroy the object. It only updates all the metadata of the class. // This can be used in conjunction with Policy::transfer to move the object to // another place. void erase_meta_only(const_iterator it) { assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator"); --size_; const size_t index = it.inner_.ctrl_ - ctrl_; const size_t index_before = (index - Group::kWidth) & capacity_; const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty(); const auto empty_before = Group(ctrl_ + index_before).MatchEmpty(); // We count how many consecutive non empties we have to the right and to the // left of `it`. If the sum is >= kWidth then there is at least one probe // window that might have seen a full group. bool was_never_full = empty_before && empty_after && static_cast<size_t>(empty_after.TrailingZeros() + empty_before.LeadingZeros()) < Group::kWidth; set_ctrl(index, was_never_full ? kEmpty : kDeleted); growth_left() += was_never_full; infoz_.RecordErase(); } void initialize_slots() { assert(capacity_); // Folks with custom allocators often make unwarranted assumptions about the // behavior of their classes vis-a-vis trivial destructability and what // calls they will or wont make. Avoid sampling for people with custom // allocators to get us out of this mess. This is not a hard guarantee but // a workaround while we plan the exact guarantee we want to provide. // // People are often sloppy with the exact type of their allocator (sometimes // it has an extra const or is missing the pair, but rebinds made it work // anyway). To avoid the ambiguity, we work off SlotAlloc which we have // bound more carefully. if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value && slots_ == nullptr) { infoz_ = Sample(); } auto layout = MakeLayout(capacity_); char* mem = static_cast<char*>( Allocate<Layout::Alignment()>(&alloc_ref(), layout.AllocSize())); ctrl_ = reinterpret_cast<ctrl_t*>(layout.template Pointer<0>(mem)); slots_ = layout.template Pointer<1>(mem); reset_ctrl(); reset_growth_left(); infoz_.RecordStorageChanged(size_, capacity_); } void destroy_slots() { if (!capacity_) return; for (size_t i = 0; i != capacity_; ++i) { if (IsFull(ctrl_[i])) { PolicyTraits::destroy(&alloc_ref(), slots_ + i); } } auto layout = MakeLayout(capacity_); // Unpoison before returning the memory to the allocator. SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_); Deallocate<Layout::Alignment()>(&alloc_ref(), ctrl_, layout.AllocSize()); ctrl_ = EmptyGroup(); slots_ = nullptr; size_ = 0; capacity_ = 0; growth_left() = 0; } void resize(size_t new_capacity) { assert(IsValidCapacity(new_capacity)); auto* old_ctrl = ctrl_; auto* old_slots = slots_; const size_t old_capacity = capacity_; capacity_ = new_capacity; initialize_slots(); size_t total_probe_length = 0; for (size_t i = 0; i != old_capacity; ++i) { if (IsFull(old_ctrl[i])) { size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(old_slots + i)); auto target = find_first_non_full(ctrl_, hash, capacity_); size_t new_i = target.offset; total_probe_length += target.probe_length; set_ctrl(new_i, H2(hash)); PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i); } } if (old_capacity) { SanitizerUnpoisonMemoryRegion(old_slots, sizeof(slot_type) * old_capacity); auto layout = MakeLayout(old_capacity); Deallocate<Layout::Alignment()>(&alloc_ref(), old_ctrl, layout.AllocSize()); } infoz_.RecordRehash(total_probe_length); } void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE { assert(IsValidCapacity(capacity_)); assert(!is_small(capacity_)); // Algorithm: // - mark all DELETED slots as EMPTY // - mark all FULL slots as DELETED // - for each slot marked as DELETED // hash = Hash(element) // target = find_first_non_full(hash) // if target is in the same group // mark slot as FULL // else if target is EMPTY // transfer element to target // mark slot as EMPTY // mark target as FULL // else if target is DELETED // swap current element with target element // mark target as FULL // repeat procedure for current slot with moved from element (target) ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_); alignas(slot_type) unsigned char raw[sizeof(slot_type)]; size_t total_probe_length = 0; slot_type* slot = reinterpret_cast<slot_type*>(&raw); for (size_t i = 0; i != capacity_; ++i) { if (!IsDeleted(ctrl_[i])) continue; size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, PolicyTraits::element(slots_ + i)); auto target = find_first_non_full(ctrl_, hash, capacity_); size_t new_i = target.offset; total_probe_length += target.probe_length; // Verify if the old and new i fall within the same group wrt the hash. // If they do, we don't need to move the object as it falls already in the // best probe we can. const auto probe_index = [&](size_t pos) { return ((pos - probe(ctrl_, hash, capacity_).offset()) & capacity_) / Group::kWidth; }; // Element doesn't move. if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) { set_ctrl(i, H2(hash)); continue; } if (IsEmpty(ctrl_[new_i])) { // Transfer element to the empty spot. // set_ctrl poisons/unpoisons the slots so we have to call it at the // right time. set_ctrl(new_i, H2(hash)); PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i); set_ctrl(i, kEmpty); } else { assert(IsDeleted(ctrl_[new_i])); set_ctrl(new_i, H2(hash)); // Until we are done rehashing, DELETED marks previously FULL slots. // Swap i and new_i elements. PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i); PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i); PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot); --i; // repeat } } reset_growth_left(); infoz_.RecordRehash(total_probe_length); } void rehash_and_grow_if_necessary() { if (capacity_ == 0) { resize(1); } else if (size() <= CapacityToGrowth(capacity()) / 2) { // Squash DELETED without growing if there is enough capacity. drop_deletes_without_resize(); } else { // Otherwise grow the container. resize(capacity_ * 2 + 1); } } bool has_element(const value_type& elem) const { size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem); auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) == elem)) return true; } if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false; seq.next(); assert(seq.index() < capacity_ && "full table!"); } return false; } // TODO(alkis): Optimize this assuming *this and that don't overlap. raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) { raw_hash_set tmp(std::move(that)); swap(tmp); return *this; } raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) { raw_hash_set tmp(std::move(that), alloc_ref()); swap(tmp); return *this; } protected: template <class K> std::pair<size_t, bool> find_or_prepare_insert(const K& key) { auto hash = hash_ref()(key); auto seq = probe(ctrl_, hash, capacity_); while (true) { Group g{ctrl_ + seq.offset()}; for (int i : g.Match(H2(hash))) { if (ABSL_PREDICT_TRUE(PolicyTraits::apply( EqualElement<K>{key, eq_ref()}, PolicyTraits::element(slots_ + seq.offset(i))))) return {seq.offset(i), false}; } if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break; seq.next(); assert(seq.index() < capacity_ && "full table!"); } return {prepare_insert(hash), true}; } size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { auto target = find_first_non_full(ctrl_, hash, capacity_); if (ABSL_PREDICT_FALSE(growth_left() == 0 && !IsDeleted(ctrl_[target.offset]))) { rehash_and_grow_if_necessary(); target = find_first_non_full(ctrl_, hash, capacity_); } ++size_; growth_left() -= IsEmpty(ctrl_[target.offset]); set_ctrl(target.offset, H2(hash)); infoz_.RecordInsert(hash, target.probe_length); return target.offset; } // Constructs the value in the space pointed by the iterator. This only works // after an unsuccessful find_or_prepare_insert() and before any other // modifications happen in the raw_hash_set. // // PRECONDITION: i is an index returned from find_or_prepare_insert(k), where // k is the key decomposed from `forward<Args>(args)...`, and the bool // returned by find_or_prepare_insert(k) was true. // POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...). template <class... Args> void emplace_at(size_t i, Args&&... args) { PolicyTraits::construct(&alloc_ref(), slots_ + i, std::forward<Args>(args)...); assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) == iterator_at(i) && "constructed value does not match the lookup key"); } iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; } const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; } private: friend struct RawHashSetTestOnlyAccess; // Reset all ctrl bytes back to kEmpty, except the sentinel. void reset_ctrl() { std::memset(ctrl_, kEmpty, capacity_ + Group::kWidth); ctrl_[capacity_] = kSentinel; SanitizerPoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_); } void reset_growth_left() { growth_left() = CapacityToGrowth(capacity()) - size_; } // Sets the control byte, and if `i < Group::kWidth`, set the cloned byte at // the end too. void set_ctrl(size_t i, ctrl_t h) { assert(i < capacity_); if (IsFull(h)) { SanitizerUnpoisonObject(slots_ + i); } else { SanitizerPoisonObject(slots_ + i); } ctrl_[i] = h; ctrl_[((i - Group::kWidth) & capacity_) + 1 + ((Group::kWidth - 1) & capacity_)] = h; } size_t& growth_left() { return settings_.template get<0>(); } hasher& hash_ref() { return settings_.template get<1>(); } const hasher& hash_ref() const { return settings_.template get<1>(); } key_equal& eq_ref() { return settings_.template get<2>(); } const key_equal& eq_ref() const { return settings_.template get<2>(); } allocator_type& alloc_ref() { return settings_.template get<3>(); } const allocator_type& alloc_ref() const { return settings_.template get<3>(); } // TODO(alkis): Investigate removing some of these fields: // - ctrl/slots can be derived from each other // - size can be moved into the slot array ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1) * ctrl_t] slot_type* slots_ = nullptr; // [capacity * slot_type] size_t size_ = 0; // number of full slots size_t capacity_ = 0; // total number of slots HashtablezInfoHandle infoz_; absl::container_internal::CompressedTuple<size_t /* growth_left */, hasher, key_equal, allocator_type> settings_{0, hasher{}, key_equal{}, allocator_type{}}; }; // Erases all elements that satisfy the predicate `pred` from the container `c`. template <typename P, typename H, typename E, typename A, typename Predicate> void EraseIf(Predicate pred, raw_hash_set<P, H, E, A>* c) { for (auto it = c->begin(), last = c->end(); it != last;) { auto copy_it = it++; if (pred(*copy_it)) { c->erase(copy_it); } } } namespace hashtable_debug_internal { template <typename Set> struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> { using Traits = typename Set::PolicyTraits; using Slot = typename Traits::slot_type; static size_t GetNumProbes(const Set& set, const typename Set::key_type& key) { size_t num_probes = 0; size_t hash = set.hash_ref()(key); auto seq = probe(set.ctrl_, hash, set.capacity_); while (true) { container_internal::Group g{set.ctrl_ + seq.offset()}; for (int i : g.Match(container_internal::H2(hash))) { if (Traits::apply( typename Set::template EqualElement<typename Set::key_type>{ key, set.eq_ref()}, Traits::element(set.slots_ + seq.offset(i)))) return num_probes; ++num_probes; } if (g.MatchEmpty()) return num_probes; seq.next(); ++num_probes; } } static size_t AllocatedByteSize(const Set& c) { size_t capacity = c.capacity_; if (capacity == 0) return 0; auto layout = Set::MakeLayout(capacity); size_t m = layout.AllocSize(); size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); if (per_slot != ~size_t{}) { m += per_slot * c.size(); } else { for (size_t i = 0; i != capacity; ++i) { if (container_internal::IsFull(c.ctrl_[i])) { m += Traits::space_used(c.slots_ + i); } } } return m; } static size_t LowerBoundAllocatedByteSize(size_t size) { size_t capacity = GrowthToLowerboundCapacity(size); if (capacity == 0) return 0; auto layout = Set::MakeLayout(NormalizeCapacity(capacity)); size_t m = layout.AllocSize(); size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); if (per_slot != ~size_t{}) { m += per_slot * size; } return m; } }; } // namespace hashtable_debug_internal } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_