// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Helper class to perform the Empty Base Optimization. // Ts can contain classes and non-classes, empty or not. For the ones that // are empty classes, we perform the optimization. If all types in Ts are empty // classes, then CompressedTuple<Ts...> is itself an empty class. // // To access the members, use member get<N>() function. // // Eg: // absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2, // t3); // assert(value.get<0>() == 7); // T1& t1 = value.get<1>(); // const T2& t2 = value.get<2>(); // ... // // https://en.cppreference.com/w/cpp/language/ebo #ifndef ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_ #define ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_ #include <initializer_list> #include <tuple> #include <type_traits> #include <utility> #include "absl/utility/utility.h" #if defined(_MSC_VER) && !defined(__NVCC__) // We need to mark these classes with this declspec to ensure that // CompressedTuple happens. #define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC __declspec(empty_bases) #else #define ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC #endif namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { template <typename... Ts> class CompressedTuple; namespace internal_compressed_tuple { template <typename D, size_t I> struct Elem; template <typename... B, size_t I> struct Elem<CompressedTuple<B...>, I> : std::tuple_element<I, std::tuple<B...>> {}; template <typename D, size_t I> using ElemT = typename Elem<D, I>::type; // Use the __is_final intrinsic if available. Where it's not available, classes // declared with the 'final' specifier cannot be used as CompressedTuple // elements. // TODO(sbenza): Replace this with std::is_final in C++14. template <typename T> constexpr bool IsFinal() { #if defined(__clang__) || defined(__GNUC__) return __is_final(T); #else return false; #endif } // We can't use EBCO on other CompressedTuples because that would mean that we // derive from multiple Storage<> instantiations with the same I parameter, // and potentially from multiple identical Storage<> instantiations. So anytime // we use type inheritance rather than encapsulation, we mark // CompressedTupleImpl, to make this easy to detect. struct uses_inheritance {}; template <typename T> constexpr bool ShouldUseBase() { return std::is_class<T>::value && std::is_empty<T>::value && !IsFinal<T>() && !std::is_base_of<uses_inheritance, T>::value; } // The storage class provides two specializations: // - For empty classes, it stores T as a base class. // - For everything else, it stores T as a member. template <typename T, size_t I, #if defined(_MSC_VER) bool UseBase = ShouldUseBase<typename std::enable_if<true, T>::type>()> #else bool UseBase = ShouldUseBase<T>()> #endif struct Storage { T value; constexpr Storage() = default; template <typename V> explicit constexpr Storage(absl::in_place_t, V&& v) : value(absl::forward<V>(v)) {} constexpr const T& get() const& { return value; } T& get() & { return value; } constexpr const T&& get() const&& { return absl::move(*this).value; } T&& get() && { return std::move(*this).value; } }; template <typename T, size_t I> struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC Storage<T, I, true> : T { constexpr Storage() = default; template <typename V> explicit constexpr Storage(absl::in_place_t, V&& v) : T(absl::forward<V>(v)) {} constexpr const T& get() const& { return *this; } T& get() & { return *this; } constexpr const T&& get() const&& { return absl::move(*this); } T&& get() && { return std::move(*this); } }; template <typename D, typename I, bool ShouldAnyUseBase> struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl; template <typename... Ts, size_t... I, bool ShouldAnyUseBase> struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl< CompressedTuple<Ts...>, absl::index_sequence<I...>, ShouldAnyUseBase> // We use the dummy identity function through std::integral_constant to // convince MSVC of accepting and expanding I in that context. Without it // you would get: // error C3548: 'I': parameter pack cannot be used in this context : uses_inheritance, Storage<Ts, std::integral_constant<size_t, I>::value>... { constexpr CompressedTupleImpl() = default; template <typename... Vs> explicit constexpr CompressedTupleImpl(absl::in_place_t, Vs&&... args) : Storage<Ts, I>(absl::in_place, absl::forward<Vs>(args))... {} friend CompressedTuple<Ts...>; }; template <typename... Ts, size_t... I> struct ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl< CompressedTuple<Ts...>, absl::index_sequence<I...>, false> // We use the dummy identity function as above... : Storage<Ts, std::integral_constant<size_t, I>::value, false>... { constexpr CompressedTupleImpl() = default; template <typename... Vs> explicit constexpr CompressedTupleImpl(absl::in_place_t, Vs&&... args) : Storage<Ts, I, false>(absl::in_place, absl::forward<Vs>(args))... {} friend CompressedTuple<Ts...>; }; std::false_type Or(std::initializer_list<std::false_type>); std::true_type Or(std::initializer_list<bool>); // MSVC requires this to be done separately rather than within the declaration // of CompressedTuple below. template <typename... Ts> constexpr bool ShouldAnyUseBase() { return decltype( Or({std::integral_constant<bool, ShouldUseBase<Ts>()>()...})){}; } template <typename T, typename V> using TupleElementMoveConstructible = typename std::conditional<std::is_reference<T>::value, std::is_convertible<V, T>, std::is_constructible<T, V&&>>::type; template <bool SizeMatches, class T, class... Vs> struct TupleMoveConstructible : std::false_type {}; template <class... Ts, class... Vs> struct TupleMoveConstructible<true, CompressedTuple<Ts...>, Vs...> : std::integral_constant< bool, absl::conjunction< TupleElementMoveConstructible<Ts, Vs&&>...>::value> {}; template <typename T> struct compressed_tuple_size; template <typename... Es> struct compressed_tuple_size<CompressedTuple<Es...>> : public std::integral_constant<std::size_t, sizeof...(Es)> {}; template <class T, class... Vs> struct TupleItemsMoveConstructible : std::integral_constant< bool, TupleMoveConstructible<compressed_tuple_size<T>::value == sizeof...(Vs), T, Vs...>::value> {}; } // namespace internal_compressed_tuple // Helper class to perform the Empty Base Class Optimization. // Ts can contain classes and non-classes, empty or not. For the ones that // are empty classes, we perform the CompressedTuple. If all types in Ts are // empty classes, then CompressedTuple<Ts...> is itself an empty class. (This // does not apply when one or more of those empty classes is itself an empty // CompressedTuple.) // // To access the members, use member .get<N>() function. // // Eg: // absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2, // t3); // assert(value.get<0>() == 7); // T1& t1 = value.get<1>(); // const T2& t2 = value.get<2>(); // ... // // https://en.cppreference.com/w/cpp/language/ebo template <typename... Ts> class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple : private internal_compressed_tuple::CompressedTupleImpl< CompressedTuple<Ts...>, absl::index_sequence_for<Ts...>, internal_compressed_tuple::ShouldAnyUseBase<Ts...>()> { private: template <int I> using ElemT = internal_compressed_tuple::ElemT<CompressedTuple, I>; template <int I> using StorageT = internal_compressed_tuple::Storage<ElemT<I>, I>; public: // There seems to be a bug in MSVC dealing in which using '=default' here will // cause the compiler to ignore the body of other constructors. The work- // around is to explicitly implement the default constructor. #if defined(_MSC_VER) constexpr CompressedTuple() : CompressedTuple::CompressedTupleImpl() {} #else constexpr CompressedTuple() = default; #endif explicit constexpr CompressedTuple(const Ts&... base) : CompressedTuple::CompressedTupleImpl(absl::in_place, base...) {} template <typename First, typename... Vs, absl::enable_if_t< absl::conjunction< // Ensure we are not hiding default copy/move constructors. absl::negation<std::is_same<void(CompressedTuple), void(absl::decay_t<First>)>>, internal_compressed_tuple::TupleItemsMoveConstructible< CompressedTuple<Ts...>, First, Vs...>>::value, bool> = true> explicit constexpr CompressedTuple(First&& first, Vs&&... base) : CompressedTuple::CompressedTupleImpl(absl::in_place, absl::forward<First>(first), absl::forward<Vs>(base)...) {} template <int I> ElemT<I>& get() & { return internal_compressed_tuple::Storage<ElemT<I>, I>::get(); } template <int I> constexpr const ElemT<I>& get() const& { return StorageT<I>::get(); } template <int I> ElemT<I>&& get() && { return std::move(*this).StorageT<I>::get(); } template <int I> constexpr const ElemT<I>&& get() const&& { return absl::move(*this).StorageT<I>::get(); } }; // Explicit specialization for a zero-element tuple // (needed to avoid ambiguous overloads for the default constructor). template <> class ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple<> {}; } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl #undef ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC #endif // ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_