// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ #define ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_ #include <algorithm> #include <initializer_list> #include <iterator> #include <utility> #include "absl/base/internal/throw_delegate.h" #include "absl/container/internal/btree.h" // IWYU pragma: export #include "absl/container/internal/common.h" #include "absl/memory/memory.h" #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { // A common base class for btree_set, btree_map, btree_multiset, and // btree_multimap. template <typename Tree> class btree_container { using params_type = typename Tree::params_type; protected: // Alias used for heterogeneous lookup functions. // `key_arg<K>` evaluates to `K` when the functors are transparent and to // `key_type` otherwise. It permits template argument deduction on `K` for the // transparent case. template <class K> using key_arg = typename KeyArg<IsTransparent<typename Tree::key_compare>::value>:: template type<K, typename Tree::key_type>; public: using key_type = typename Tree::key_type; using value_type = typename Tree::value_type; using size_type = typename Tree::size_type; using difference_type = typename Tree::difference_type; using key_compare = typename Tree::key_compare; using value_compare = typename Tree::value_compare; using allocator_type = typename Tree::allocator_type; using reference = typename Tree::reference; using const_reference = typename Tree::const_reference; using pointer = typename Tree::pointer; using const_pointer = typename Tree::const_pointer; using iterator = typename Tree::iterator; using const_iterator = typename Tree::const_iterator; using reverse_iterator = typename Tree::reverse_iterator; using const_reverse_iterator = typename Tree::const_reverse_iterator; using node_type = typename Tree::node_handle_type; // Constructors/assignments. btree_container() : tree_(key_compare(), allocator_type()) {} explicit btree_container(const key_compare &comp, const allocator_type &alloc = allocator_type()) : tree_(comp, alloc) {} explicit btree_container(const allocator_type &alloc) : tree_(key_compare(), alloc) {} btree_container(const btree_container &other) : btree_container(other, absl::allocator_traits<allocator_type>:: select_on_container_copy_construction( other.get_allocator())) {} btree_container(const btree_container &other, const allocator_type &alloc) : tree_(other.tree_, alloc) {} btree_container(btree_container &&other) noexcept( std::is_nothrow_move_constructible<Tree>::value) = default; btree_container(btree_container &&other, const allocator_type &alloc) : tree_(std::move(other.tree_), alloc) {} btree_container &operator=(const btree_container &other) = default; btree_container &operator=(btree_container &&other) noexcept( std::is_nothrow_move_assignable<Tree>::value) = default; // Iterator routines. iterator begin() { return tree_.begin(); } const_iterator begin() const { return tree_.begin(); } const_iterator cbegin() const { return tree_.begin(); } iterator end() { return tree_.end(); } const_iterator end() const { return tree_.end(); } const_iterator cend() const { return tree_.end(); } reverse_iterator rbegin() { return tree_.rbegin(); } const_reverse_iterator rbegin() const { return tree_.rbegin(); } const_reverse_iterator crbegin() const { return tree_.rbegin(); } reverse_iterator rend() { return tree_.rend(); } const_reverse_iterator rend() const { return tree_.rend(); } const_reverse_iterator crend() const { return tree_.rend(); } // Lookup routines. template <typename K = key_type> size_type count(const key_arg<K> &key) const { auto equal_range = this->equal_range(key); return std::distance(equal_range.first, equal_range.second); } template <typename K = key_type> iterator find(const key_arg<K> &key) { return tree_.find(key); } template <typename K = key_type> const_iterator find(const key_arg<K> &key) const { return tree_.find(key); } template <typename K = key_type> bool contains(const key_arg<K> &key) const { return find(key) != end(); } template <typename K = key_type> iterator lower_bound(const key_arg<K> &key) { return tree_.lower_bound(key); } template <typename K = key_type> const_iterator lower_bound(const key_arg<K> &key) const { return tree_.lower_bound(key); } template <typename K = key_type> iterator upper_bound(const key_arg<K> &key) { return tree_.upper_bound(key); } template <typename K = key_type> const_iterator upper_bound(const key_arg<K> &key) const { return tree_.upper_bound(key); } template <typename K = key_type> std::pair<iterator, iterator> equal_range(const key_arg<K> &key) { return tree_.equal_range(key); } template <typename K = key_type> std::pair<const_iterator, const_iterator> equal_range( const key_arg<K> &key) const { return tree_.equal_range(key); } // Deletion routines. Note that there is also a deletion routine that is // specific to btree_set_container/btree_multiset_container. // Erase the specified iterator from the btree. The iterator must be valid // (i.e. not equal to end()). Return an iterator pointing to the node after // the one that was erased (or end() if none exists). iterator erase(const_iterator iter) { return tree_.erase(iterator(iter)); } iterator erase(iterator iter) { return tree_.erase(iter); } iterator erase(const_iterator first, const_iterator last) { return tree_.erase_range(iterator(first), iterator(last)).second; } template <typename K = key_type> size_type erase(const key_arg<K> &key) { auto equal_range = this->equal_range(key); return tree_.erase_range(equal_range.first, equal_range.second).first; } // Extract routines. node_type extract(iterator position) { // Use Move instead of Transfer, because the rebalancing code expects to // have a valid object to scribble metadata bits on top of. auto node = CommonAccess::Move<node_type>(get_allocator(), position.slot()); erase(position); return node; } node_type extract(const_iterator position) { return extract(iterator(position)); } // Utility routines. void clear() { tree_.clear(); } void swap(btree_container &other) { tree_.swap(other.tree_); } void verify() const { tree_.verify(); } // Size routines. size_type size() const { return tree_.size(); } size_type max_size() const { return tree_.max_size(); } bool empty() const { return tree_.empty(); } friend bool operator==(const btree_container &x, const btree_container &y) { if (x.size() != y.size()) return false; return std::equal(x.begin(), x.end(), y.begin()); } friend bool operator!=(const btree_container &x, const btree_container &y) { return !(x == y); } friend bool operator<(const btree_container &x, const btree_container &y) { return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); } friend bool operator>(const btree_container &x, const btree_container &y) { return y < x; } friend bool operator<=(const btree_container &x, const btree_container &y) { return !(y < x); } friend bool operator>=(const btree_container &x, const btree_container &y) { return !(x < y); } // The allocator used by the btree. allocator_type get_allocator() const { return tree_.get_allocator(); } // The key comparator used by the btree. key_compare key_comp() const { return tree_.key_comp(); } value_compare value_comp() const { return tree_.value_comp(); } // Support absl::Hash. template <typename State> friend State AbslHashValue(State h, const btree_container &b) { for (const auto &v : b) { h = State::combine(std::move(h), v); } return State::combine(std::move(h), b.size()); } protected: Tree tree_; }; // A common base class for btree_set and btree_map. template <typename Tree> class btree_set_container : public btree_container<Tree> { using super_type = btree_container<Tree>; using params_type = typename Tree::params_type; using init_type = typename params_type::init_type; using is_key_compare_to = typename params_type::is_key_compare_to; friend class BtreeNodePeer; protected: template <class K> using key_arg = typename super_type::template key_arg<K>; public: using key_type = typename Tree::key_type; using value_type = typename Tree::value_type; using size_type = typename Tree::size_type; using key_compare = typename Tree::key_compare; using allocator_type = typename Tree::allocator_type; using iterator = typename Tree::iterator; using const_iterator = typename Tree::const_iterator; using node_type = typename super_type::node_type; using insert_return_type = InsertReturnType<iterator, node_type>; // Inherit constructors. using super_type::super_type; btree_set_container() {} // Range constructors. template <class InputIterator> btree_set_container(InputIterator b, InputIterator e, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : super_type(comp, alloc) { insert(b, e); } template <class InputIterator> btree_set_container(InputIterator b, InputIterator e, const allocator_type &alloc) : btree_set_container(b, e, key_compare(), alloc) {} // Initializer list constructors. btree_set_container(std::initializer_list<init_type> init, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : btree_set_container(init.begin(), init.end(), comp, alloc) {} btree_set_container(std::initializer_list<init_type> init, const allocator_type &alloc) : btree_set_container(init.begin(), init.end(), alloc) {} // Insertion routines. std::pair<iterator, bool> insert(const value_type &v) { return this->tree_.insert_unique(params_type::key(v), v); } std::pair<iterator, bool> insert(value_type &&v) { return this->tree_.insert_unique(params_type::key(v), std::move(v)); } template <typename... Args> std::pair<iterator, bool> emplace(Args &&... args) { init_type v(std::forward<Args>(args)...); return this->tree_.insert_unique(params_type::key(v), std::move(v)); } iterator insert(const_iterator hint, const value_type &v) { return this->tree_ .insert_hint_unique(iterator(hint), params_type::key(v), v) .first; } iterator insert(const_iterator hint, value_type &&v) { return this->tree_ .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) .first; } template <typename... Args> iterator emplace_hint(const_iterator hint, Args &&... args) { init_type v(std::forward<Args>(args)...); return this->tree_ .insert_hint_unique(iterator(hint), params_type::key(v), std::move(v)) .first; } template <typename InputIterator> void insert(InputIterator b, InputIterator e) { this->tree_.insert_iterator_unique(b, e, 0); } void insert(std::initializer_list<init_type> init) { this->tree_.insert_iterator_unique(init.begin(), init.end(), 0); } insert_return_type insert(node_type &&node) { if (!node) return {this->end(), false, node_type()}; std::pair<iterator, bool> res = this->tree_.insert_unique(params_type::key(CommonAccess::GetSlot(node)), CommonAccess::GetSlot(node)); if (res.second) { CommonAccess::Destroy(&node); return {res.first, true, node_type()}; } else { return {res.first, false, std::move(node)}; } } iterator insert(const_iterator hint, node_type &&node) { if (!node) return this->end(); std::pair<iterator, bool> res = this->tree_.insert_hint_unique( iterator(hint), params_type::key(CommonAccess::GetSlot(node)), CommonAccess::GetSlot(node)); if (res.second) CommonAccess::Destroy(&node); return res.first; } // Node extraction routines. // TODO(ezb): when the comparator is heterogeneous and has different // equivalence classes for different lookup types, we should extract the first // equivalent value if there are multiple. template <typename K = key_type> node_type extract(const key_arg<K> &key) { auto it = this->find(key); return it == this->end() ? node_type() : extract(it); } using super_type::extract; // Merge routines. // Moves elements from `src` into `this`. If the element already exists in // `this`, it is left unmodified in `src`. template < typename T, typename absl::enable_if_t< absl::conjunction< std::is_same<value_type, typename T::value_type>, std::is_same<allocator_type, typename T::allocator_type>, std::is_same<typename params_type::is_map_container, typename T::params_type::is_map_container>>::value, int> = 0> void merge(btree_container<T> &src) { // NOLINT for (auto src_it = src.begin(); src_it != src.end();) { if (insert(std::move(params_type::element(src_it.slot()))).second) { src_it = src.erase(src_it); } else { ++src_it; } } } template < typename T, typename absl::enable_if_t< absl::conjunction< std::is_same<value_type, typename T::value_type>, std::is_same<allocator_type, typename T::allocator_type>, std::is_same<typename params_type::is_map_container, typename T::params_type::is_map_container>>::value, int> = 0> void merge(btree_container<T> &&src) { merge(src); } }; // Base class for btree_map. template <typename Tree> class btree_map_container : public btree_set_container<Tree> { using super_type = btree_set_container<Tree>; using params_type = typename Tree::params_type; friend class BtreeNodePeer; private: template <class K> using key_arg = typename super_type::template key_arg<K>; public: using key_type = typename Tree::key_type; using mapped_type = typename params_type::mapped_type; using value_type = typename Tree::value_type; using key_compare = typename Tree::key_compare; using allocator_type = typename Tree::allocator_type; using iterator = typename Tree::iterator; using const_iterator = typename Tree::const_iterator; // Inherit constructors. using super_type::super_type; btree_map_container() {} // Insertion routines. // Note: the nullptr template arguments and extra `const M&` overloads allow // for supporting bitfield arguments. template <typename K = key_type, class M> std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, const M &obj) { return insert_or_assign_impl(k, obj); } template <typename K = key_type, class M, K * = nullptr> std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, const M &obj) { return insert_or_assign_impl(std::forward<K>(k), obj); } template <typename K = key_type, class M, M * = nullptr> std::pair<iterator, bool> insert_or_assign(const key_arg<K> &k, M &&obj) { return insert_or_assign_impl(k, std::forward<M>(obj)); } template <typename K = key_type, class M, K * = nullptr, M * = nullptr> std::pair<iterator, bool> insert_or_assign(key_arg<K> &&k, M &&obj) { return insert_or_assign_impl(std::forward<K>(k), std::forward<M>(obj)); } template <typename K = key_type, class M> iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, const M &obj) { return insert_or_assign_hint_impl(hint, k, obj); } template <typename K = key_type, class M, K * = nullptr> iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, const M &obj) { return insert_or_assign_hint_impl(hint, std::forward<K>(k), obj); } template <typename K = key_type, class M, M * = nullptr> iterator insert_or_assign(const_iterator hint, const key_arg<K> &k, M &&obj) { return insert_or_assign_hint_impl(hint, k, std::forward<M>(obj)); } template <typename K = key_type, class M, K * = nullptr, M * = nullptr> iterator insert_or_assign(const_iterator hint, key_arg<K> &&k, M &&obj) { return insert_or_assign_hint_impl(hint, std::forward<K>(k), std::forward<M>(obj)); } template <typename K = key_type, typename... Args, typename absl::enable_if_t< !std::is_convertible<K, const_iterator>::value, int> = 0> std::pair<iterator, bool> try_emplace(const key_arg<K> &k, Args &&... args) { return try_emplace_impl(k, std::forward<Args>(args)...); } template <typename K = key_type, typename... Args, typename absl::enable_if_t< !std::is_convertible<K, const_iterator>::value, int> = 0> std::pair<iterator, bool> try_emplace(key_arg<K> &&k, Args &&... args) { return try_emplace_impl(std::forward<K>(k), std::forward<Args>(args)...); } template <typename K = key_type, typename... Args> iterator try_emplace(const_iterator hint, const key_arg<K> &k, Args &&... args) { return try_emplace_hint_impl(hint, k, std::forward<Args>(args)...); } template <typename K = key_type, typename... Args> iterator try_emplace(const_iterator hint, key_arg<K> &&k, Args &&... args) { return try_emplace_hint_impl(hint, std::forward<K>(k), std::forward<Args>(args)...); } template <typename K = key_type> mapped_type &operator[](const key_arg<K> &k) { return try_emplace(k).first->second; } template <typename K = key_type> mapped_type &operator[](key_arg<K> &&k) { return try_emplace(std::forward<K>(k)).first->second; } template <typename K = key_type> mapped_type &at(const key_arg<K> &key) { auto it = this->find(key); if (it == this->end()) base_internal::ThrowStdOutOfRange("absl::btree_map::at"); return it->second; } template <typename K = key_type> const mapped_type &at(const key_arg<K> &key) const { auto it = this->find(key); if (it == this->end()) base_internal::ThrowStdOutOfRange("absl::btree_map::at"); return it->second; } private: // Note: when we call `std::forward<M>(obj)` twice, it's safe because // insert_unique/insert_hint_unique are guaranteed to not consume `obj` when // `ret.second` is false. template <class K, class M> std::pair<iterator, bool> insert_or_assign_impl(K &&k, M &&obj) { const std::pair<iterator, bool> ret = this->tree_.insert_unique(k, std::forward<K>(k), std::forward<M>(obj)); if (!ret.second) ret.first->second = std::forward<M>(obj); return ret; } template <class K, class M> iterator insert_or_assign_hint_impl(const_iterator hint, K &&k, M &&obj) { const std::pair<iterator, bool> ret = this->tree_.insert_hint_unique( iterator(hint), k, std::forward<K>(k), std::forward<M>(obj)); if (!ret.second) ret.first->second = std::forward<M>(obj); return ret.first; } template <class K, class... Args> std::pair<iterator, bool> try_emplace_impl(K &&k, Args &&... args) { return this->tree_.insert_unique( k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)), std::forward_as_tuple(std::forward<Args>(args)...)); } template <class K, class... Args> iterator try_emplace_hint_impl(const_iterator hint, K &&k, Args &&... args) { return this->tree_ .insert_hint_unique(iterator(hint), k, std::piecewise_construct, std::forward_as_tuple(std::forward<K>(k)), std::forward_as_tuple(std::forward<Args>(args)...)) .first; } }; // A common base class for btree_multiset and btree_multimap. template <typename Tree> class btree_multiset_container : public btree_container<Tree> { using super_type = btree_container<Tree>; using params_type = typename Tree::params_type; using init_type = typename params_type::init_type; using is_key_compare_to = typename params_type::is_key_compare_to; template <class K> using key_arg = typename super_type::template key_arg<K>; public: using key_type = typename Tree::key_type; using value_type = typename Tree::value_type; using size_type = typename Tree::size_type; using key_compare = typename Tree::key_compare; using allocator_type = typename Tree::allocator_type; using iterator = typename Tree::iterator; using const_iterator = typename Tree::const_iterator; using node_type = typename super_type::node_type; // Inherit constructors. using super_type::super_type; btree_multiset_container() {} // Range constructors. template <class InputIterator> btree_multiset_container(InputIterator b, InputIterator e, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : super_type(comp, alloc) { insert(b, e); } template <class InputIterator> btree_multiset_container(InputIterator b, InputIterator e, const allocator_type &alloc) : btree_multiset_container(b, e, key_compare(), alloc) {} // Initializer list constructors. btree_multiset_container(std::initializer_list<init_type> init, const key_compare &comp = key_compare(), const allocator_type &alloc = allocator_type()) : btree_multiset_container(init.begin(), init.end(), comp, alloc) {} btree_multiset_container(std::initializer_list<init_type> init, const allocator_type &alloc) : btree_multiset_container(init.begin(), init.end(), alloc) {} // Insertion routines. iterator insert(const value_type &v) { return this->tree_.insert_multi(v); } iterator insert(value_type &&v) { return this->tree_.insert_multi(std::move(v)); } iterator insert(const_iterator hint, const value_type &v) { return this->tree_.insert_hint_multi(iterator(hint), v); } iterator insert(const_iterator hint, value_type &&v) { return this->tree_.insert_hint_multi(iterator(hint), std::move(v)); } template <typename InputIterator> void insert(InputIterator b, InputIterator e) { this->tree_.insert_iterator_multi(b, e); } void insert(std::initializer_list<init_type> init) { this->tree_.insert_iterator_multi(init.begin(), init.end()); } template <typename... Args> iterator emplace(Args &&... args) { return this->tree_.insert_multi(init_type(std::forward<Args>(args)...)); } template <typename... Args> iterator emplace_hint(const_iterator hint, Args &&... args) { return this->tree_.insert_hint_multi( iterator(hint), init_type(std::forward<Args>(args)...)); } iterator insert(node_type &&node) { if (!node) return this->end(); iterator res = this->tree_.insert_multi(params_type::key(CommonAccess::GetSlot(node)), CommonAccess::GetSlot(node)); CommonAccess::Destroy(&node); return res; } iterator insert(const_iterator hint, node_type &&node) { if (!node) return this->end(); iterator res = this->tree_.insert_hint_multi( iterator(hint), std::move(params_type::element(CommonAccess::GetSlot(node)))); CommonAccess::Destroy(&node); return res; } // Node extraction routines. // TODO(ezb): we are supposed to extract the first equivalent key if there are // multiple, but this isn't guaranteed to extract the first one. template <typename K = key_type> node_type extract(const key_arg<K> &key) { auto it = this->find(key); return it == this->end() ? node_type() : extract(it); } using super_type::extract; // Merge routines. // Moves all elements from `src` into `this`. template < typename T, typename absl::enable_if_t< absl::conjunction< std::is_same<value_type, typename T::value_type>, std::is_same<allocator_type, typename T::allocator_type>, std::is_same<typename params_type::is_map_container, typename T::params_type::is_map_container>>::value, int> = 0> void merge(btree_container<T> &src) { // NOLINT for (auto src_it = src.begin(), end = src.end(); src_it != end; ++src_it) { insert(std::move(params_type::element(src_it.slot()))); } src.clear(); } template < typename T, typename absl::enable_if_t< absl::conjunction< std::is_same<value_type, typename T::value_type>, std::is_same<allocator_type, typename T::allocator_type>, std::is_same<typename params_type::is_map_container, typename T::params_type::is_map_container>>::value, int> = 0> void merge(btree_container<T> &&src) { merge(src); } }; // A base class for btree_multimap. template <typename Tree> class btree_multimap_container : public btree_multiset_container<Tree> { using super_type = btree_multiset_container<Tree>; using params_type = typename Tree::params_type; public: using mapped_type = typename params_type::mapped_type; // Inherit constructors. using super_type::super_type; btree_multimap_container() {} }; } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_CONTAINER_INTERNAL_BTREE_CONTAINER_H_