// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include <stdint.h> #include <algorithm> #include <functional> #include <map> #include <numeric> #include <random> #include <set> #include <string> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <vector> #include "absl/base/internal/raw_logging.h" #include "absl/container/btree_map.h" #include "absl/container/btree_set.h" #include "absl/container/btree_test.h" #include "absl/container/flat_hash_map.h" #include "absl/container/flat_hash_set.h" #include "absl/container/internal/hashtable_debug.h" #include "absl/flags/flag.h" #include "absl/hash/hash.h" #include "absl/memory/memory.h" #include "absl/strings/cord.h" #include "absl/strings/str_format.h" #include "absl/time/time.h" #include "benchmark/benchmark.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_internal { namespace { constexpr size_t kBenchmarkValues = 1 << 20; // How many times we add and remove sub-batches in one batch of *AddRem // benchmarks. constexpr size_t kAddRemBatchSize = 1 << 2; // Generates n values in the range [0, 4 * n]. template <typename V> std::vector<V> GenerateValues(int n) { constexpr int kSeed = 23; return GenerateValuesWithSeed<V>(n, 4 * n, kSeed); } // Benchmark insertion of values into a container. template <typename T> void BM_InsertImpl(benchmark::State& state, bool sorted) { using V = typename remove_pair_const<typename T::value_type>::type; typename KeyOfValue<typename T::key_type, V>::type key_of_value; std::vector<V> values = GenerateValues<V>(kBenchmarkValues); if (sorted) { std::sort(values.begin(), values.end()); } T container(values.begin(), values.end()); // Remove and re-insert 10% of the keys per batch. const int batch_size = (kBenchmarkValues + 9) / 10; while (state.KeepRunningBatch(batch_size)) { state.PauseTiming(); const auto i = static_cast<int>(state.iterations()); for (int j = i; j < i + batch_size; j++) { int x = j % kBenchmarkValues; container.erase(key_of_value(values[x])); } state.ResumeTiming(); for (int j = i; j < i + batch_size; j++) { int x = j % kBenchmarkValues; container.insert(values[x]); } } } template <typename T> void BM_Insert(benchmark::State& state) { BM_InsertImpl<T>(state, false); } template <typename T> void BM_InsertSorted(benchmark::State& state) { BM_InsertImpl<T>(state, true); } // container::insert sometimes returns a pair<iterator, bool> and sometimes // returns an iterator (for multi- containers). template <typename Iter> Iter GetIterFromInsert(const std::pair<Iter, bool>& pair) { return pair.first; } template <typename Iter> Iter GetIterFromInsert(const Iter iter) { return iter; } // Benchmark insertion of values into a container at the end. template <typename T> void BM_InsertEnd(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; typename KeyOfValue<typename T::key_type, V>::type key_of_value; T container; const int kSize = 10000; for (int i = 0; i < kSize; ++i) { container.insert(Generator<V>(kSize)(i)); } V v = Generator<V>(kSize)(kSize - 1); typename T::key_type k = key_of_value(v); auto it = container.find(k); while (state.KeepRunning()) { // Repeatedly removing then adding v. container.erase(it); it = GetIterFromInsert(container.insert(v)); } } // Benchmark inserting the first few elements in a container. In b-tree, this is // when the root node grows. template <typename T> void BM_InsertSmall(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; const int kSize = 8; std::vector<V> values = GenerateValues<V>(kSize); T container; while (state.KeepRunningBatch(kSize)) { for (int i = 0; i < kSize; ++i) { benchmark::DoNotOptimize(container.insert(values[i])); } state.PauseTiming(); // Do not measure the time it takes to clear the container. container.clear(); state.ResumeTiming(); } } template <typename T> void BM_LookupImpl(benchmark::State& state, bool sorted) { using V = typename remove_pair_const<typename T::value_type>::type; typename KeyOfValue<typename T::key_type, V>::type key_of_value; std::vector<V> values = GenerateValues<V>(kBenchmarkValues); if (sorted) { std::sort(values.begin(), values.end()); } T container(values.begin(), values.end()); while (state.KeepRunning()) { int idx = state.iterations() % kBenchmarkValues; benchmark::DoNotOptimize(container.find(key_of_value(values[idx]))); } } // Benchmark lookup of values in a container. template <typename T> void BM_Lookup(benchmark::State& state) { BM_LookupImpl<T>(state, false); } // Benchmark lookup of values in a full container, meaning that values // are inserted in-order to take advantage of biased insertion, which // yields a full tree. template <typename T> void BM_FullLookup(benchmark::State& state) { BM_LookupImpl<T>(state, true); } // Benchmark deletion of values from a container. template <typename T> void BM_Delete(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; typename KeyOfValue<typename T::key_type, V>::type key_of_value; std::vector<V> values = GenerateValues<V>(kBenchmarkValues); T container(values.begin(), values.end()); // Remove and re-insert 10% of the keys per batch. const int batch_size = (kBenchmarkValues + 9) / 10; while (state.KeepRunningBatch(batch_size)) { const int i = state.iterations(); for (int j = i; j < i + batch_size; j++) { int x = j % kBenchmarkValues; container.erase(key_of_value(values[x])); } state.PauseTiming(); for (int j = i; j < i + batch_size; j++) { int x = j % kBenchmarkValues; container.insert(values[x]); } state.ResumeTiming(); } } // Benchmark deletion of multiple values from a container. template <typename T> void BM_DeleteRange(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; typename KeyOfValue<typename T::key_type, V>::type key_of_value; std::vector<V> values = GenerateValues<V>(kBenchmarkValues); T container(values.begin(), values.end()); // Remove and re-insert 10% of the keys per batch. const int batch_size = (kBenchmarkValues + 9) / 10; while (state.KeepRunningBatch(batch_size)) { const int i = state.iterations(); const int start_index = i % kBenchmarkValues; state.PauseTiming(); { std::vector<V> removed; removed.reserve(batch_size); auto itr = container.find(key_of_value(values[start_index])); auto start = itr; for (int j = 0; j < batch_size; j++) { if (itr == container.end()) { state.ResumeTiming(); container.erase(start, itr); state.PauseTiming(); itr = container.begin(); start = itr; } removed.push_back(*itr++); } state.ResumeTiming(); container.erase(start, itr); state.PauseTiming(); container.insert(removed.begin(), removed.end()); } state.ResumeTiming(); } } // Benchmark steady-state insert (into first half of range) and remove (from // second half of range), treating the container approximately like a queue with // log-time access for all elements. This benchmark does not test the case where // insertion and removal happen in the same region of the tree. This benchmark // counts two value constructors. template <typename T> void BM_QueueAddRem(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; typename KeyOfValue<typename T::key_type, V>::type key_of_value; ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance"); T container; const size_t half = kBenchmarkValues / 2; std::vector<int> remove_keys(half); std::vector<int> add_keys(half); // We want to do the exact same work repeatedly, and the benchmark can end // after a different number of iterations depending on the speed of the // individual run so we use a large batch size here and ensure that we do // deterministic work every batch. while (state.KeepRunningBatch(half * kAddRemBatchSize)) { state.PauseTiming(); container.clear(); for (size_t i = 0; i < half; ++i) { remove_keys[i] = i; add_keys[i] = i; } constexpr int kSeed = 5; std::mt19937_64 rand(kSeed); std::shuffle(remove_keys.begin(), remove_keys.end(), rand); std::shuffle(add_keys.begin(), add_keys.end(), rand); // Note needs lazy generation of values. Generator<V> g(kBenchmarkValues * kAddRemBatchSize); for (size_t i = 0; i < half; ++i) { container.insert(g(add_keys[i])); container.insert(g(half + remove_keys[i])); } // There are three parts each of size "half": // 1 is being deleted from [offset - half, offset) // 2 is standing [offset, offset + half) // 3 is being inserted into [offset + half, offset + 2 * half) size_t offset = 0; for (size_t i = 0; i < kAddRemBatchSize; ++i) { std::shuffle(remove_keys.begin(), remove_keys.end(), rand); std::shuffle(add_keys.begin(), add_keys.end(), rand); offset += half; state.ResumeTiming(); for (size_t idx = 0; idx < half; ++idx) { container.erase(key_of_value(g(offset - half + remove_keys[idx]))); container.insert(g(offset + half + add_keys[idx])); } state.PauseTiming(); } state.ResumeTiming(); } } // Mixed insertion and deletion in the same range using pre-constructed values. template <typename T> void BM_MixedAddRem(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; typename KeyOfValue<typename T::key_type, V>::type key_of_value; ABSL_RAW_CHECK(kBenchmarkValues % 2 == 0, "for performance"); T container; // Create two random shuffles std::vector<int> remove_keys(kBenchmarkValues); std::vector<int> add_keys(kBenchmarkValues); // We want to do the exact same work repeatedly, and the benchmark can end // after a different number of iterations depending on the speed of the // individual run so we use a large batch size here and ensure that we do // deterministic work every batch. while (state.KeepRunningBatch(kBenchmarkValues * kAddRemBatchSize)) { state.PauseTiming(); container.clear(); constexpr int kSeed = 7; std::mt19937_64 rand(kSeed); std::vector<V> values = GenerateValues<V>(kBenchmarkValues * 2); // Insert the first half of the values (already in random order) container.insert(values.begin(), values.begin() + kBenchmarkValues); // Insert the first half of the values (already in random order) for (size_t i = 0; i < kBenchmarkValues; ++i) { // remove_keys and add_keys will be swapped before each round, // therefore fill add_keys here w/ the keys being inserted, so // they'll be the first to be removed. remove_keys[i] = i + kBenchmarkValues; add_keys[i] = i; } for (size_t i = 0; i < kAddRemBatchSize; ++i) { remove_keys.swap(add_keys); std::shuffle(remove_keys.begin(), remove_keys.end(), rand); std::shuffle(add_keys.begin(), add_keys.end(), rand); state.ResumeTiming(); for (size_t idx = 0; idx < kBenchmarkValues; ++idx) { container.erase(key_of_value(values[remove_keys[idx]])); container.insert(values[add_keys[idx]]); } state.PauseTiming(); } state.ResumeTiming(); } } // Insertion at end, removal from the beginning. This benchmark // counts two value constructors. // TODO(ezb): we could add a GenerateNext version of generator that could reduce // noise for string-like types. template <typename T> void BM_Fifo(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; T container; // Need lazy generation of values as state.max_iterations is large. Generator<V> g(kBenchmarkValues + state.max_iterations); for (int i = 0; i < kBenchmarkValues; i++) { container.insert(g(i)); } while (state.KeepRunning()) { container.erase(container.begin()); container.insert(container.end(), g(state.iterations() + kBenchmarkValues)); } } // Iteration (forward) through the tree template <typename T> void BM_FwdIter(benchmark::State& state) { using V = typename remove_pair_const<typename T::value_type>::type; using R = typename T::value_type const*; std::vector<V> values = GenerateValues<V>(kBenchmarkValues); T container(values.begin(), values.end()); auto iter = container.end(); R r = nullptr; while (state.KeepRunning()) { if (iter == container.end()) iter = container.begin(); r = &(*iter); ++iter; } benchmark::DoNotOptimize(r); } // Benchmark random range-construction of a container. template <typename T> void BM_RangeConstructionImpl(benchmark::State& state, bool sorted) { using V = typename remove_pair_const<typename T::value_type>::type; std::vector<V> values = GenerateValues<V>(kBenchmarkValues); if (sorted) { std::sort(values.begin(), values.end()); } { T container(values.begin(), values.end()); } while (state.KeepRunning()) { T container(values.begin(), values.end()); benchmark::DoNotOptimize(container); } } template <typename T> void BM_InsertRangeRandom(benchmark::State& state) { BM_RangeConstructionImpl<T>(state, false); } template <typename T> void BM_InsertRangeSorted(benchmark::State& state) { BM_RangeConstructionImpl<T>(state, true); } #define STL_ORDERED_TYPES(value) \ using stl_set_##value = std::set<value>; \ using stl_map_##value = std::map<value, intptr_t>; \ using stl_multiset_##value = std::multiset<value>; \ using stl_multimap_##value = std::multimap<value, intptr_t> using StdString = std::string; STL_ORDERED_TYPES(int32_t); STL_ORDERED_TYPES(int64_t); STL_ORDERED_TYPES(StdString); STL_ORDERED_TYPES(Cord); STL_ORDERED_TYPES(Time); #define STL_UNORDERED_TYPES(value) \ using stl_unordered_set_##value = std::unordered_set<value>; \ using stl_unordered_map_##value = std::unordered_map<value, intptr_t>; \ using flat_hash_set_##value = flat_hash_set<value>; \ using flat_hash_map_##value = flat_hash_map<value, intptr_t>; \ using stl_unordered_multiset_##value = std::unordered_multiset<value>; \ using stl_unordered_multimap_##value = \ std::unordered_multimap<value, intptr_t> #define STL_UNORDERED_TYPES_CUSTOM_HASH(value, hash) \ using stl_unordered_set_##value = std::unordered_set<value, hash>; \ using stl_unordered_map_##value = std::unordered_map<value, intptr_t, hash>; \ using flat_hash_set_##value = flat_hash_set<value, hash>; \ using flat_hash_map_##value = flat_hash_map<value, intptr_t, hash>; \ using stl_unordered_multiset_##value = std::unordered_multiset<value, hash>; \ using stl_unordered_multimap_##value = \ std::unordered_multimap<value, intptr_t, hash> STL_UNORDERED_TYPES_CUSTOM_HASH(Cord, absl::Hash<absl::Cord>); STL_UNORDERED_TYPES(int32_t); STL_UNORDERED_TYPES(int64_t); STL_UNORDERED_TYPES(StdString); STL_UNORDERED_TYPES_CUSTOM_HASH(Time, absl::Hash<absl::Time>); #define BTREE_TYPES(value) \ using btree_256_set_##value = \ btree_set<value, std::less<value>, std::allocator<value>>; \ using btree_256_map_##value = \ btree_map<value, intptr_t, std::less<value>, \ std::allocator<std::pair<const value, intptr_t>>>; \ using btree_256_multiset_##value = \ btree_multiset<value, std::less<value>, std::allocator<value>>; \ using btree_256_multimap_##value = \ btree_multimap<value, intptr_t, std::less<value>, \ std::allocator<std::pair<const value, intptr_t>>> BTREE_TYPES(int32_t); BTREE_TYPES(int64_t); BTREE_TYPES(StdString); BTREE_TYPES(Cord); BTREE_TYPES(Time); #define MY_BENCHMARK4(type, func) \ void BM_##type##_##func(benchmark::State& state) { BM_##func<type>(state); } \ BENCHMARK(BM_##type##_##func) #define MY_BENCHMARK3(type) \ MY_BENCHMARK4(type, Insert); \ MY_BENCHMARK4(type, InsertSorted); \ MY_BENCHMARK4(type, InsertEnd); \ MY_BENCHMARK4(type, InsertSmall); \ MY_BENCHMARK4(type, Lookup); \ MY_BENCHMARK4(type, FullLookup); \ MY_BENCHMARK4(type, Delete); \ MY_BENCHMARK4(type, DeleteRange); \ MY_BENCHMARK4(type, QueueAddRem); \ MY_BENCHMARK4(type, MixedAddRem); \ MY_BENCHMARK4(type, Fifo); \ MY_BENCHMARK4(type, FwdIter); \ MY_BENCHMARK4(type, InsertRangeRandom); \ MY_BENCHMARK4(type, InsertRangeSorted) #define MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type) \ MY_BENCHMARK3(stl_##type); \ MY_BENCHMARK3(stl_unordered_##type); \ MY_BENCHMARK3(btree_256_##type) #define MY_BENCHMARK2(type) \ MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(type); \ MY_BENCHMARK3(flat_hash_##type) // Define MULTI_TESTING to see benchmarks for multi-containers also. // // You can use --copt=-DMULTI_TESTING. #ifdef MULTI_TESTING #define MY_BENCHMARK(type) \ MY_BENCHMARK2(set_##type); \ MY_BENCHMARK2(map_##type); \ MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multiset_##type); \ MY_BENCHMARK2_SUPPORTS_MULTI_ONLY(multimap_##type) #else #define MY_BENCHMARK(type) \ MY_BENCHMARK2(set_##type); \ MY_BENCHMARK2(map_##type) #endif MY_BENCHMARK(int32_t); MY_BENCHMARK(int64_t); MY_BENCHMARK(StdString); MY_BENCHMARK(Cord); MY_BENCHMARK(Time); // Define a type whose size and cost of moving are independently customizable. // When sizeof(value_type) increases, we expect btree to no longer have as much // cache-locality advantage over STL. When cost of moving increases, we expect // btree to actually do more work than STL because it has to move values around // and STL doesn't have to. template <int Size, int Copies> struct BigType { BigType() : BigType(0) {} explicit BigType(int x) { std::iota(values.begin(), values.end(), x); } void Copy(const BigType& other) { for (int i = 0; i < Size && i < Copies; ++i) values[i] = other.values[i]; // If Copies > Size, do extra copies. for (int i = Size, idx = 0; i < Copies; ++i) { int64_t tmp = other.values[idx]; benchmark::DoNotOptimize(tmp); idx = idx + 1 == Size ? 0 : idx + 1; } } BigType(const BigType& other) { Copy(other); } BigType& operator=(const BigType& other) { Copy(other); return *this; } // Compare only the first Copies elements if Copies is less than Size. bool operator<(const BigType& other) const { return std::lexicographical_compare( values.begin(), values.begin() + std::min(Size, Copies), other.values.begin(), other.values.begin() + std::min(Size, Copies)); } bool operator==(const BigType& other) const { return std::equal(values.begin(), values.begin() + std::min(Size, Copies), other.values.begin()); } // Support absl::Hash. template <typename State> friend State AbslHashValue(State h, const BigType& b) { for (int i = 0; i < Size && i < Copies; ++i) h = State::combine(std::move(h), b.values[i]); return h; } std::array<int64_t, Size> values; }; #define BIG_TYPE_BENCHMARKS(SIZE, COPIES) \ using stl_set_size##SIZE##copies##COPIES = std::set<BigType<SIZE, COPIES>>; \ using stl_map_size##SIZE##copies##COPIES = \ std::map<BigType<SIZE, COPIES>, intptr_t>; \ using stl_multiset_size##SIZE##copies##COPIES = \ std::multiset<BigType<SIZE, COPIES>>; \ using stl_multimap_size##SIZE##copies##COPIES = \ std::multimap<BigType<SIZE, COPIES>, intptr_t>; \ using stl_unordered_set_size##SIZE##copies##COPIES = \ std::unordered_set<BigType<SIZE, COPIES>, \ absl::Hash<BigType<SIZE, COPIES>>>; \ using stl_unordered_map_size##SIZE##copies##COPIES = \ std::unordered_map<BigType<SIZE, COPIES>, intptr_t, \ absl::Hash<BigType<SIZE, COPIES>>>; \ using flat_hash_set_size##SIZE##copies##COPIES = \ flat_hash_set<BigType<SIZE, COPIES>>; \ using flat_hash_map_size##SIZE##copies##COPIES = \ flat_hash_map<BigType<SIZE, COPIES>, intptr_t>; \ using stl_unordered_multiset_size##SIZE##copies##COPIES = \ std::unordered_multiset<BigType<SIZE, COPIES>, \ absl::Hash<BigType<SIZE, COPIES>>>; \ using stl_unordered_multimap_size##SIZE##copies##COPIES = \ std::unordered_multimap<BigType<SIZE, COPIES>, intptr_t, \ absl::Hash<BigType<SIZE, COPIES>>>; \ using btree_256_set_size##SIZE##copies##COPIES = \ btree_set<BigType<SIZE, COPIES>>; \ using btree_256_map_size##SIZE##copies##COPIES = \ btree_map<BigType<SIZE, COPIES>, intptr_t>; \ using btree_256_multiset_size##SIZE##copies##COPIES = \ btree_multiset<BigType<SIZE, COPIES>>; \ using btree_256_multimap_size##SIZE##copies##COPIES = \ btree_multimap<BigType<SIZE, COPIES>, intptr_t>; \ MY_BENCHMARK(size##SIZE##copies##COPIES) // Define BIG_TYPE_TESTING to see benchmarks for more big types. // // You can use --copt=-DBIG_TYPE_TESTING. #ifndef NODESIZE_TESTING #ifdef BIG_TYPE_TESTING BIG_TYPE_BENCHMARKS(1, 4); BIG_TYPE_BENCHMARKS(4, 1); BIG_TYPE_BENCHMARKS(4, 4); BIG_TYPE_BENCHMARKS(1, 8); BIG_TYPE_BENCHMARKS(8, 1); BIG_TYPE_BENCHMARKS(8, 8); BIG_TYPE_BENCHMARKS(1, 16); BIG_TYPE_BENCHMARKS(16, 1); BIG_TYPE_BENCHMARKS(16, 16); BIG_TYPE_BENCHMARKS(1, 32); BIG_TYPE_BENCHMARKS(32, 1); BIG_TYPE_BENCHMARKS(32, 32); #else BIG_TYPE_BENCHMARKS(32, 32); #endif #endif // Benchmark using unique_ptrs to large value types. In order to be able to use // the same benchmark code as the other types, use a type that holds a // unique_ptr and has a copy constructor. template <int Size> struct BigTypePtr { BigTypePtr() : BigTypePtr(0) {} explicit BigTypePtr(int x) { ptr = absl::make_unique<BigType<Size, Size>>(x); } BigTypePtr(const BigTypePtr& other) { ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr); } BigTypePtr(BigTypePtr&& other) noexcept = default; BigTypePtr& operator=(const BigTypePtr& other) { ptr = absl::make_unique<BigType<Size, Size>>(*other.ptr); } BigTypePtr& operator=(BigTypePtr&& other) noexcept = default; bool operator<(const BigTypePtr& other) const { return *ptr < *other.ptr; } bool operator==(const BigTypePtr& other) const { return *ptr == *other.ptr; } std::unique_ptr<BigType<Size, Size>> ptr; }; template <int Size> double ContainerInfo(const btree_set<BigTypePtr<Size>>& b) { const double bytes_used = b.bytes_used() + b.size() * sizeof(BigType<Size, Size>); const double bytes_per_value = bytes_used / b.size(); BtreeContainerInfoLog(b, bytes_used, bytes_per_value); return bytes_per_value; } template <int Size> double ContainerInfo(const btree_map<int, BigTypePtr<Size>>& b) { const double bytes_used = b.bytes_used() + b.size() * sizeof(BigType<Size, Size>); const double bytes_per_value = bytes_used / b.size(); BtreeContainerInfoLog(b, bytes_used, bytes_per_value); return bytes_per_value; } #define BIG_TYPE_PTR_BENCHMARKS(SIZE) \ using stl_set_size##SIZE##copies##SIZE##ptr = std::set<BigType<SIZE, SIZE>>; \ using stl_map_size##SIZE##copies##SIZE##ptr = \ std::map<int, BigType<SIZE, SIZE>>; \ using stl_unordered_set_size##SIZE##copies##SIZE##ptr = \ std::unordered_set<BigType<SIZE, SIZE>, \ absl::Hash<BigType<SIZE, SIZE>>>; \ using stl_unordered_map_size##SIZE##copies##SIZE##ptr = \ std::unordered_map<int, BigType<SIZE, SIZE>>; \ using flat_hash_set_size##SIZE##copies##SIZE##ptr = \ flat_hash_set<BigType<SIZE, SIZE>>; \ using flat_hash_map_size##SIZE##copies##SIZE##ptr = \ flat_hash_map<int, BigTypePtr<SIZE>>; \ using btree_256_set_size##SIZE##copies##SIZE##ptr = \ btree_set<BigTypePtr<SIZE>>; \ using btree_256_map_size##SIZE##copies##SIZE##ptr = \ btree_map<int, BigTypePtr<SIZE>>; \ MY_BENCHMARK3(stl_set_size##SIZE##copies##SIZE##ptr); \ MY_BENCHMARK3(stl_unordered_set_size##SIZE##copies##SIZE##ptr); \ MY_BENCHMARK3(flat_hash_set_size##SIZE##copies##SIZE##ptr); \ MY_BENCHMARK3(btree_256_set_size##SIZE##copies##SIZE##ptr); \ MY_BENCHMARK3(stl_map_size##SIZE##copies##SIZE##ptr); \ MY_BENCHMARK3(stl_unordered_map_size##SIZE##copies##SIZE##ptr); \ MY_BENCHMARK3(flat_hash_map_size##SIZE##copies##SIZE##ptr); \ MY_BENCHMARK3(btree_256_map_size##SIZE##copies##SIZE##ptr) BIG_TYPE_PTR_BENCHMARKS(32); } // namespace } // namespace container_internal ABSL_NAMESPACE_END } // namespace absl