// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: thread_annotations.h // ----------------------------------------------------------------------------- // // This header file contains macro definitions for thread safety annotations // that allow developers to document the locking policies of multi-threaded // code. The annotations can also help program analysis tools to identify // potential thread safety issues. // // These annotations are implemented using compiler attributes. Using the macros // defined here instead of raw attributes allow for portability and future // compatibility. // // When referring to mutexes in the arguments of the attributes, you should // use variable names or more complex expressions (e.g. my_object->mutex_) // that evaluate to a concrete mutex object whenever possible. If the mutex // you want to refer to is not in scope, you may use a member pointer // (e.g. &MyClass::mutex_) to refer to a mutex in some (unknown) object. #ifndef ABSL_BASE_THREAD_ANNOTATIONS_H_ #define ABSL_BASE_THREAD_ANNOTATIONS_H_ #include "absl/base/attributes.h" #include "absl/base/config.h" // TODO(mbonadei): Remove after the backward compatibility period. #include "absl/base/internal/thread_annotations.h" // IWYU pragma: export // ABSL_GUARDED_BY() // // Documents if a shared field or global variable needs to be protected by a // mutex. ABSL_GUARDED_BY() allows the user to specify a particular mutex that // should be held when accessing the annotated variable. // // Although this annotation (and ABSL_PT_GUARDED_BY, below) cannot be applied to // local variables, a local variable and its associated mutex can often be // combined into a small class or struct, thereby allowing the annotation. // // Example: // // class Foo { // Mutex mu_; // int p1_ ABSL_GUARDED_BY(mu_); // ... // }; #if ABSL_HAVE_ATTRIBUTE(guarded_by) #define ABSL_GUARDED_BY(x) __attribute__((guarded_by(x))) #else #define ABSL_GUARDED_BY(x) #endif // ABSL_PT_GUARDED_BY() // // Documents if the memory location pointed to by a pointer should be guarded // by a mutex when dereferencing the pointer. // // Example: // class Foo { // Mutex mu_; // int *p1_ ABSL_PT_GUARDED_BY(mu_); // ... // }; // // Note that a pointer variable to a shared memory location could itself be a // shared variable. // // Example: // // // `q_`, guarded by `mu1_`, points to a shared memory location that is // // guarded by `mu2_`: // int *q_ ABSL_GUARDED_BY(mu1_) ABSL_PT_GUARDED_BY(mu2_); #if ABSL_HAVE_ATTRIBUTE(pt_guarded_by) #define ABSL_PT_GUARDED_BY(x) __attribute__((pt_guarded_by(x))) #else #define ABSL_PT_GUARDED_BY(x) #endif // ABSL_ACQUIRED_AFTER() / ABSL_ACQUIRED_BEFORE() // // Documents the acquisition order between locks that can be held // simultaneously by a thread. For any two locks that need to be annotated // to establish an acquisition order, only one of them needs the annotation. // (i.e. You don't have to annotate both locks with both ABSL_ACQUIRED_AFTER // and ABSL_ACQUIRED_BEFORE.) // // As with ABSL_GUARDED_BY, this is only applicable to mutexes that are shared // fields or global variables. // // Example: // // Mutex m1_; // Mutex m2_ ABSL_ACQUIRED_AFTER(m1_); #if ABSL_HAVE_ATTRIBUTE(acquired_after) #define ABSL_ACQUIRED_AFTER(...) __attribute__((acquired_after(__VA_ARGS__))) #else #define ABSL_ACQUIRED_AFTER(...) #endif #if ABSL_HAVE_ATTRIBUTE(acquired_before) #define ABSL_ACQUIRED_BEFORE(...) __attribute__((acquired_before(__VA_ARGS__))) #else #define ABSL_ACQUIRED_BEFORE(...) #endif // ABSL_EXCLUSIVE_LOCKS_REQUIRED() / ABSL_SHARED_LOCKS_REQUIRED() // // Documents a function that expects a mutex to be held prior to entry. // The mutex is expected to be held both on entry to, and exit from, the // function. // // An exclusive lock allows read-write access to the guarded data member(s), and // only one thread can acquire a lock exclusively at any one time. A shared lock // allows read-only access, and any number of threads can acquire a shared lock // concurrently. // // Generally, non-const methods should be annotated with // ABSL_EXCLUSIVE_LOCKS_REQUIRED, while const methods should be annotated with // ABSL_SHARED_LOCKS_REQUIRED. // // Example: // // Mutex mu1, mu2; // int a ABSL_GUARDED_BY(mu1); // int b ABSL_GUARDED_BY(mu2); // // void foo() ABSL_EXCLUSIVE_LOCKS_REQUIRED(mu1, mu2) { ... } // void bar() const ABSL_SHARED_LOCKS_REQUIRED(mu1, mu2) { ... } #if ABSL_HAVE_ATTRIBUTE(exclusive_locks_required) #define ABSL_EXCLUSIVE_LOCKS_REQUIRED(...) \ __attribute__((exclusive_locks_required(__VA_ARGS__))) #else #define ABSL_EXCLUSIVE_LOCKS_REQUIRED(...) #endif #if ABSL_HAVE_ATTRIBUTE(shared_locks_required) #define ABSL_SHARED_LOCKS_REQUIRED(...) \ __attribute__((shared_locks_required(__VA_ARGS__))) #else #define ABSL_SHARED_LOCKS_REQUIRED(...) #endif // ABSL_LOCKS_EXCLUDED() // // Documents the locks acquired in the body of the function. These locks // cannot be held when calling this function (as Abseil's `Mutex` locks are // non-reentrant). #if ABSL_HAVE_ATTRIBUTE(locks_excluded) #define ABSL_LOCKS_EXCLUDED(...) __attribute__((locks_excluded(__VA_ARGS__))) #else #define ABSL_LOCKS_EXCLUDED(...) #endif // ABSL_LOCK_RETURNED() // // Documents a function that returns a mutex without acquiring it. For example, // a public getter method that returns a pointer to a private mutex should // be annotated with ABSL_LOCK_RETURNED. #if ABSL_HAVE_ATTRIBUTE(lock_returned) #define ABSL_LOCK_RETURNED(x) __attribute__((lock_returned(x))) #else #define ABSL_LOCK_RETURNED(x) #endif // ABSL_LOCKABLE // // Documents if a class/type is a lockable type (such as the `Mutex` class). #if ABSL_HAVE_ATTRIBUTE(lockable) #define ABSL_LOCKABLE __attribute__((lockable)) #else #define ABSL_LOCKABLE #endif // ABSL_SCOPED_LOCKABLE // // Documents if a class does RAII locking (such as the `MutexLock` class). // The constructor should use `LOCK_FUNCTION()` to specify the mutex that is // acquired, and the destructor should use `UNLOCK_FUNCTION()` with no // arguments; the analysis will assume that the destructor unlocks whatever the // constructor locked. #if ABSL_HAVE_ATTRIBUTE(scoped_lockable) #define ABSL_SCOPED_LOCKABLE __attribute__((scoped_lockable)) #else #define ABSL_SCOPED_LOCKABLE #endif // ABSL_EXCLUSIVE_LOCK_FUNCTION() // // Documents functions that acquire a lock in the body of a function, and do // not release it. #if ABSL_HAVE_ATTRIBUTE(exclusive_lock_function) #define ABSL_EXCLUSIVE_LOCK_FUNCTION(...) \ __attribute__((exclusive_lock_function(__VA_ARGS__))) #else #define ABSL_EXCLUSIVE_LOCK_FUNCTION(...) #endif // ABSL_SHARED_LOCK_FUNCTION() // // Documents functions that acquire a shared (reader) lock in the body of a // function, and do not release it. #if ABSL_HAVE_ATTRIBUTE(shared_lock_function) #define ABSL_SHARED_LOCK_FUNCTION(...) \ __attribute__((shared_lock_function(__VA_ARGS__))) #else #define ABSL_SHARED_LOCK_FUNCTION(...) #endif // ABSL_UNLOCK_FUNCTION() // // Documents functions that expect a lock to be held on entry to the function, // and release it in the body of the function. #if ABSL_HAVE_ATTRIBUTE(unlock_function) #define ABSL_UNLOCK_FUNCTION(...) __attribute__((unlock_function(__VA_ARGS__))) #else #define ABSL_UNLOCK_FUNCTION(...) #endif // ABSL_EXCLUSIVE_TRYLOCK_FUNCTION() / ABSL_SHARED_TRYLOCK_FUNCTION() // // Documents functions that try to acquire a lock, and return success or failure // (or a non-boolean value that can be interpreted as a boolean). // The first argument should be `true` for functions that return `true` on // success, or `false` for functions that return `false` on success. The second // argument specifies the mutex that is locked on success. If unspecified, this // mutex is assumed to be `this`. #if ABSL_HAVE_ATTRIBUTE(exclusive_trylock_function) #define ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(...) \ __attribute__((exclusive_trylock_function(__VA_ARGS__))) #else #define ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(...) #endif #if ABSL_HAVE_ATTRIBUTE(shared_trylock_function) #define ABSL_SHARED_TRYLOCK_FUNCTION(...) \ __attribute__((shared_trylock_function(__VA_ARGS__))) #else #define ABSL_SHARED_TRYLOCK_FUNCTION(...) #endif // ABSL_ASSERT_EXCLUSIVE_LOCK() / ABSL_ASSERT_SHARED_LOCK() // // Documents functions that dynamically check to see if a lock is held, and fail // if it is not held. #if ABSL_HAVE_ATTRIBUTE(assert_exclusive_lock) #define ABSL_ASSERT_EXCLUSIVE_LOCK(...) \ __attribute__((assert_exclusive_lock(__VA_ARGS__))) #else #define ABSL_ASSERT_EXCLUSIVE_LOCK(...) #endif #if ABSL_HAVE_ATTRIBUTE(assert_shared_lock) #define ABSL_ASSERT_SHARED_LOCK(...) \ __attribute__((assert_shared_lock(__VA_ARGS__))) #else #define ABSL_ASSERT_SHARED_LOCK(...) #endif // ABSL_NO_THREAD_SAFETY_ANALYSIS // // Turns off thread safety checking within the body of a particular function. // This annotation is used to mark functions that are known to be correct, but // the locking behavior is more complicated than the analyzer can handle. #if ABSL_HAVE_ATTRIBUTE(no_thread_safety_analysis) #define ABSL_NO_THREAD_SAFETY_ANALYSIS \ __attribute__((no_thread_safety_analysis)) #else #define ABSL_NO_THREAD_SAFETY_ANALYSIS #endif //------------------------------------------------------------------------------ // Tool-Supplied Annotations //------------------------------------------------------------------------------ // ABSL_TS_UNCHECKED should be placed around lock expressions that are not valid // C++ syntax, but which are present for documentation purposes. These // annotations will be ignored by the analysis. #define ABSL_TS_UNCHECKED(x) "" // ABSL_TS_FIXME is used to mark lock expressions that are not valid C++ syntax. // It is used by automated tools to mark and disable invalid expressions. // The annotation should either be fixed, or changed to ABSL_TS_UNCHECKED. #define ABSL_TS_FIXME(x) "" // Like ABSL_NO_THREAD_SAFETY_ANALYSIS, this turns off checking within the body // of a particular function. However, this attribute is used to mark functions // that are incorrect and need to be fixed. It is used by automated tools to // avoid breaking the build when the analysis is updated. // Code owners are expected to eventually fix the routine. #define ABSL_NO_THREAD_SAFETY_ANALYSIS_FIXME ABSL_NO_THREAD_SAFETY_ANALYSIS // Similar to ABSL_NO_THREAD_SAFETY_ANALYSIS_FIXME, this macro marks a // ABSL_GUARDED_BY annotation that needs to be fixed, because it is producing // thread safety warning. It disables the ABSL_GUARDED_BY. #define ABSL_GUARDED_BY_FIXME(x) // Disables warnings for a single read operation. This can be used to avoid // warnings when it is known that the read is not actually involved in a race, // but the compiler cannot confirm that. #define ABSL_TS_UNCHECKED_READ(x) absl::base_internal::ts_unchecked_read(x) namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { // Takes a reference to a guarded data member, and returns an unguarded // reference. // Do not used this function directly, use ABSL_TS_UNCHECKED_READ instead. template <typename T> inline const T& ts_unchecked_read(const T& v) ABSL_NO_THREAD_SAFETY_ANALYSIS { return v; } template <typename T> inline T& ts_unchecked_read(T& v) ABSL_NO_THREAD_SAFETY_ANALYSIS { return v; } } // namespace base_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_BASE_THREAD_ANNOTATIONS_H_