// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // A bunch of threads repeatedly hash an array of ints protected by a // spinlock. If the spinlock is working properly, all elements of the // array should be equal at the end of the test. #include <cstdint> #include <limits> #include <random> #include <thread> // NOLINT(build/c++11) #include <vector> #include "gtest/gtest.h" #include "absl/base/attributes.h" #include "absl/base/internal/low_level_scheduling.h" #include "absl/base/internal/scheduling_mode.h" #include "absl/base/internal/spinlock.h" #include "absl/base/internal/sysinfo.h" #include "absl/base/macros.h" #include "absl/synchronization/blocking_counter.h" #include "absl/synchronization/notification.h" constexpr int32_t kNumThreads = 10; constexpr int32_t kIters = 1000; namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { // This is defined outside of anonymous namespace so that it can be // a friend of SpinLock to access protected methods for testing. struct SpinLockTest { static uint32_t EncodeWaitCycles(int64_t wait_start_time, int64_t wait_end_time) { return SpinLock::EncodeWaitCycles(wait_start_time, wait_end_time); } static uint64_t DecodeWaitCycles(uint32_t lock_value) { return SpinLock::DecodeWaitCycles(lock_value); } }; namespace { static constexpr int kArrayLength = 10; static uint32_t values[kArrayLength]; ABSL_CONST_INIT static SpinLock static_cooperative_spinlock( absl::kConstInit, base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL); ABSL_CONST_INIT static SpinLock static_noncooperative_spinlock( absl::kConstInit, base_internal::SCHEDULE_KERNEL_ONLY); // Simple integer hash function based on the public domain lookup2 hash. // http://burtleburtle.net/bob/c/lookup2.c static uint32_t Hash32(uint32_t a, uint32_t c) { uint32_t b = 0x9e3779b9UL; // The golden ratio; an arbitrary value. a -= b; a -= c; a ^= (c >> 13); b -= c; b -= a; b ^= (a << 8); c -= a; c -= b; c ^= (b >> 13); a -= b; a -= c; a ^= (c >> 12); b -= c; b -= a; b ^= (a << 16); c -= a; c -= b; c ^= (b >> 5); a -= b; a -= c; a ^= (c >> 3); b -= c; b -= a; b ^= (a << 10); c -= a; c -= b; c ^= (b >> 15); return c; } static void TestFunction(int thread_salt, SpinLock* spinlock) { for (int i = 0; i < kIters; i++) { SpinLockHolder h(spinlock); for (int j = 0; j < kArrayLength; j++) { const int index = (j + thread_salt) % kArrayLength; values[index] = Hash32(values[index], thread_salt); std::this_thread::yield(); } } } static void ThreadedTest(SpinLock* spinlock) { std::vector<std::thread> threads; for (int i = 0; i < kNumThreads; ++i) { threads.push_back(std::thread(TestFunction, i, spinlock)); } for (auto& thread : threads) { thread.join(); } SpinLockHolder h(spinlock); for (int i = 1; i < kArrayLength; i++) { EXPECT_EQ(values[0], values[i]); } } TEST(SpinLock, StackNonCooperativeDisablesScheduling) { SpinLock spinlock(base_internal::SCHEDULE_KERNEL_ONLY); spinlock.Lock(); EXPECT_FALSE(base_internal::SchedulingGuard::ReschedulingIsAllowed()); spinlock.Unlock(); } TEST(SpinLock, StaticNonCooperativeDisablesScheduling) { static_noncooperative_spinlock.Lock(); EXPECT_FALSE(base_internal::SchedulingGuard::ReschedulingIsAllowed()); static_noncooperative_spinlock.Unlock(); } TEST(SpinLock, WaitCyclesEncoding) { // These are implementation details not exported by SpinLock. const int kProfileTimestampShift = 7; const int kLockwordReservedShift = 3; const uint32_t kSpinLockSleeper = 8; // We should be able to encode up to (1^kMaxCycleBits - 1) without clamping // but the lower kProfileTimestampShift will be dropped. const int kMaxCyclesShift = 32 - kLockwordReservedShift + kProfileTimestampShift; const uint64_t kMaxCycles = (int64_t{1} << kMaxCyclesShift) - 1; // These bits should be zero after encoding. const uint32_t kLockwordReservedMask = (1 << kLockwordReservedShift) - 1; // These bits are dropped when wait cycles are encoded. const uint64_t kProfileTimestampMask = (1 << kProfileTimestampShift) - 1; // Test a bunch of random values std::default_random_engine generator; // Shift to avoid overflow below. std::uniform_int_distribution<uint64_t> time_distribution( 0, std::numeric_limits<uint64_t>::max() >> 4); std::uniform_int_distribution<uint64_t> cycle_distribution(0, kMaxCycles); for (int i = 0; i < 100; i++) { int64_t start_time = time_distribution(generator); int64_t cycles = cycle_distribution(generator); int64_t end_time = start_time + cycles; uint32_t lock_value = SpinLockTest::EncodeWaitCycles(start_time, end_time); EXPECT_EQ(0, lock_value & kLockwordReservedMask); uint64_t decoded = SpinLockTest::DecodeWaitCycles(lock_value); EXPECT_EQ(0, decoded & kProfileTimestampMask); EXPECT_EQ(cycles & ~kProfileTimestampMask, decoded); } // Test corner cases int64_t start_time = time_distribution(generator); EXPECT_EQ(kSpinLockSleeper, SpinLockTest::EncodeWaitCycles(start_time, start_time)); EXPECT_EQ(0, SpinLockTest::DecodeWaitCycles(0)); EXPECT_EQ(0, SpinLockTest::DecodeWaitCycles(kLockwordReservedMask)); EXPECT_EQ(kMaxCycles & ~kProfileTimestampMask, SpinLockTest::DecodeWaitCycles(~kLockwordReservedMask)); // Check that we cannot produce kSpinLockSleeper during encoding. int64_t sleeper_cycles = kSpinLockSleeper << (kProfileTimestampShift - kLockwordReservedShift); uint32_t sleeper_value = SpinLockTest::EncodeWaitCycles(start_time, start_time + sleeper_cycles); EXPECT_NE(sleeper_value, kSpinLockSleeper); // Test clamping uint32_t max_value = SpinLockTest::EncodeWaitCycles(start_time, start_time + kMaxCycles); uint64_t max_value_decoded = SpinLockTest::DecodeWaitCycles(max_value); uint64_t expected_max_value_decoded = kMaxCycles & ~kProfileTimestampMask; EXPECT_EQ(expected_max_value_decoded, max_value_decoded); const int64_t step = (1 << kProfileTimestampShift); uint32_t after_max_value = SpinLockTest::EncodeWaitCycles(start_time, start_time + kMaxCycles + step); uint64_t after_max_value_decoded = SpinLockTest::DecodeWaitCycles(after_max_value); EXPECT_EQ(expected_max_value_decoded, after_max_value_decoded); uint32_t before_max_value = SpinLockTest::EncodeWaitCycles( start_time, start_time + kMaxCycles - step); uint64_t before_max_value_decoded = SpinLockTest::DecodeWaitCycles(before_max_value); EXPECT_GT(expected_max_value_decoded, before_max_value_decoded); } TEST(SpinLockWithThreads, StackSpinLock) { SpinLock spinlock; ThreadedTest(&spinlock); } TEST(SpinLockWithThreads, StackCooperativeSpinLock) { SpinLock spinlock(base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL); ThreadedTest(&spinlock); } TEST(SpinLockWithThreads, StackNonCooperativeSpinLock) { SpinLock spinlock(base_internal::SCHEDULE_KERNEL_ONLY); ThreadedTest(&spinlock); } TEST(SpinLockWithThreads, StaticCooperativeSpinLock) { ThreadedTest(&static_cooperative_spinlock); } TEST(SpinLockWithThreads, StaticNonCooperativeSpinLock) { ThreadedTest(&static_noncooperative_spinlock); } TEST(SpinLockWithThreads, DoesNotDeadlock) { struct Helper { static void NotifyThenLock(Notification* locked, SpinLock* spinlock, BlockingCounter* b) { locked->WaitForNotification(); // Wait for LockThenWait() to hold "s". b->DecrementCount(); SpinLockHolder l(spinlock); } static void LockThenWait(Notification* locked, SpinLock* spinlock, BlockingCounter* b) { SpinLockHolder l(spinlock); locked->Notify(); b->Wait(); } static void DeadlockTest(SpinLock* spinlock, int num_spinners) { Notification locked; BlockingCounter counter(num_spinners); std::vector<std::thread> threads; threads.push_back( std::thread(Helper::LockThenWait, &locked, spinlock, &counter)); for (int i = 0; i < num_spinners; ++i) { threads.push_back( std::thread(Helper::NotifyThenLock, &locked, spinlock, &counter)); } for (auto& thread : threads) { thread.join(); } } }; SpinLock stack_cooperative_spinlock( base_internal::SCHEDULE_COOPERATIVE_AND_KERNEL); SpinLock stack_noncooperative_spinlock(base_internal::SCHEDULE_KERNEL_ONLY); Helper::DeadlockTest(&stack_cooperative_spinlock, base_internal::NumCPUs() * 2); Helper::DeadlockTest(&stack_noncooperative_spinlock, base_internal::NumCPUs() * 2); Helper::DeadlockTest(&static_cooperative_spinlock, base_internal::NumCPUs() * 2); Helper::DeadlockTest(&static_noncooperative_spinlock, base_internal::NumCPUs() * 2); } } // namespace } // namespace base_internal ABSL_NAMESPACE_END } // namespace absl