// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // absl::base_internal::invoke(f, args...) is an implementation of // INVOKE(f, args...) from section [func.require] of the C++ standard. // // [func.require] // Define INVOKE (f, t1, t2, ..., tN) as follows: // 1. (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T // and t1 is an object of type T or a reference to an object of type T or a // reference to an object of a type derived from T; // 2. ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a // class T and t1 is not one of the types described in the previous item; // 3. t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is // an object of type T or a reference to an object of type T or a reference // to an object of a type derived from T; // 4. (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1 // is not one of the types described in the previous item; // 5. f(t1, t2, ..., tN) in all other cases. // // The implementation is SFINAE-friendly: substitution failure within invoke() // isn't an error. #ifndef ABSL_BASE_INTERNAL_INVOKE_H_ #define ABSL_BASE_INTERNAL_INVOKE_H_ #include <algorithm> #include <type_traits> #include <utility> #include "absl/meta/type_traits.h" // The following code is internal implementation detail. See the comment at the // top of this file for the API documentation. namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { // The five classes below each implement one of the clauses from the definition // of INVOKE. The inner class template Accept<F, Args...> checks whether the // clause is applicable; static function template Invoke(f, args...) does the // invocation. // // By separating the clause selection logic from invocation we make sure that // Invoke() does exactly what the standard says. template <typename Derived> struct StrippedAccept { template <typename... Args> struct Accept : Derived::template AcceptImpl<typename std::remove_cv< typename std::remove_reference<Args>::type>::type...> {}; }; // (t1.*f)(t2, ..., tN) when f is a pointer to a member function of a class T // and t1 is an object of type T or a reference to an object of type T or a // reference to an object of a type derived from T. struct MemFunAndRef : StrippedAccept<MemFunAndRef> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename MemFunType, typename C, typename Obj, typename... Args> struct AcceptImpl<MemFunType C::*, Obj, Args...> : std::integral_constant<bool, std::is_base_of<C, Obj>::value && absl::is_function<MemFunType>::value> { }; template <typename MemFun, typename Obj, typename... Args> static decltype((std::declval<Obj>().* std::declval<MemFun>())(std::declval<Args>()...)) Invoke(MemFun&& mem_fun, Obj&& obj, Args&&... args) { return (std::forward<Obj>(obj).* std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...); } }; // ((*t1).*f)(t2, ..., tN) when f is a pointer to a member function of a // class T and t1 is not one of the types described in the previous item. struct MemFunAndPtr : StrippedAccept<MemFunAndPtr> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename MemFunType, typename C, typename Ptr, typename... Args> struct AcceptImpl<MemFunType C::*, Ptr, Args...> : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value && absl::is_function<MemFunType>::value> { }; template <typename MemFun, typename Ptr, typename... Args> static decltype(((*std::declval<Ptr>()).* std::declval<MemFun>())(std::declval<Args>()...)) Invoke(MemFun&& mem_fun, Ptr&& ptr, Args&&... args) { return ((*std::forward<Ptr>(ptr)).* std::forward<MemFun>(mem_fun))(std::forward<Args>(args)...); } }; // t1.*f when N == 1 and f is a pointer to member data of a class T and t1 is // an object of type T or a reference to an object of type T or a reference // to an object of a type derived from T. struct DataMemAndRef : StrippedAccept<DataMemAndRef> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename R, typename C, typename Obj> struct AcceptImpl<R C::*, Obj> : std::integral_constant<bool, std::is_base_of<C, Obj>::value && !absl::is_function<R>::value> {}; template <typename DataMem, typename Ref> static decltype(std::declval<Ref>().*std::declval<DataMem>()) Invoke( DataMem&& data_mem, Ref&& ref) { return std::forward<Ref>(ref).*std::forward<DataMem>(data_mem); } }; // (*t1).*f when N == 1 and f is a pointer to member data of a class T and t1 // is not one of the types described in the previous item. struct DataMemAndPtr : StrippedAccept<DataMemAndPtr> { template <typename... Args> struct AcceptImpl : std::false_type {}; template <typename R, typename C, typename Ptr> struct AcceptImpl<R C::*, Ptr> : std::integral_constant<bool, !std::is_base_of<C, Ptr>::value && !absl::is_function<R>::value> {}; template <typename DataMem, typename Ptr> static decltype((*std::declval<Ptr>()).*std::declval<DataMem>()) Invoke( DataMem&& data_mem, Ptr&& ptr) { return (*std::forward<Ptr>(ptr)).*std::forward<DataMem>(data_mem); } }; // f(t1, t2, ..., tN) in all other cases. struct Callable { // Callable doesn't have Accept because it's the last clause that gets picked // when none of the previous clauses are applicable. template <typename F, typename... Args> static decltype(std::declval<F>()(std::declval<Args>()...)) Invoke( F&& f, Args&&... args) { return std::forward<F>(f)(std::forward<Args>(args)...); } }; // Resolves to the first matching clause. template <typename... Args> struct Invoker { typedef typename std::conditional< MemFunAndRef::Accept<Args...>::value, MemFunAndRef, typename std::conditional< MemFunAndPtr::Accept<Args...>::value, MemFunAndPtr, typename std::conditional< DataMemAndRef::Accept<Args...>::value, DataMemAndRef, typename std::conditional<DataMemAndPtr::Accept<Args...>::value, DataMemAndPtr, Callable>::type>::type>:: type>::type type; }; // The result type of Invoke<F, Args...>. template <typename F, typename... Args> using invoke_result_t = decltype(Invoker<F, Args...>::type::Invoke( std::declval<F>(), std::declval<Args>()...)); // Invoke(f, args...) is an implementation of INVOKE(f, args...) from section // [func.require] of the C++ standard. template <typename F, typename... Args> invoke_result_t<F, Args...> invoke(F&& f, Args&&... args) { return Invoker<F, Args...>::type::Invoke(std::forward<F>(f), std::forward<Args>(args)...); } } // namespace base_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_BASE_INTERNAL_INVOKE_H_