// Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/base/internal/exponential_biased.h" #include <stddef.h> #include <cmath> #include <cstdint> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/strings/str_cat.h" using ::testing::Ge; namespace absl { ABSL_NAMESPACE_BEGIN namespace base_internal { MATCHER_P2(IsBetween, a, b, absl::StrCat(std::string(negation ? "isn't" : "is"), " between ", a, " and ", b)) { return a <= arg && arg <= b; } // Tests of the quality of the random numbers generated // This uses the Anderson Darling test for uniformity. // See "Evaluating the Anderson-Darling Distribution" by Marsaglia // for details. // Short cut version of ADinf(z), z>0 (from Marsaglia) // This returns the p-value for Anderson Darling statistic in // the limit as n-> infinity. For finite n, apply the error fix below. double AndersonDarlingInf(double z) { if (z < 2) { return exp(-1.2337141 / z) / sqrt(z) * (2.00012 + (0.247105 - (0.0649821 - (0.0347962 - (0.011672 - 0.00168691 * z) * z) * z) * z) * z); } return exp( -exp(1.0776 - (2.30695 - (0.43424 - (0.082433 - (0.008056 - 0.0003146 * z) * z) * z) * z) * z)); } // Corrects the approximation error in AndersonDarlingInf for small values of n // Add this to AndersonDarlingInf to get a better approximation // (from Marsaglia) double AndersonDarlingErrFix(int n, double x) { if (x > 0.8) { return (-130.2137 + (745.2337 - (1705.091 - (1950.646 - (1116.360 - 255.7844 * x) * x) * x) * x) * x) / n; } double cutoff = 0.01265 + 0.1757 / n; if (x < cutoff) { double t = x / cutoff; t = sqrt(t) * (1 - t) * (49 * t - 102); return t * (0.0037 / (n * n) + 0.00078 / n + 0.00006) / n; } else { double t = (x - cutoff) / (0.8 - cutoff); t = -0.00022633 + (6.54034 - (14.6538 - (14.458 - (8.259 - 1.91864 * t) * t) * t) * t) * t; return t * (0.04213 + 0.01365 / n) / n; } } // Returns the AndersonDarling p-value given n and the value of the statistic double AndersonDarlingPValue(int n, double z) { double ad = AndersonDarlingInf(z); double errfix = AndersonDarlingErrFix(n, ad); return ad + errfix; } double AndersonDarlingStatistic(const std::vector<double>& random_sample) { int n = random_sample.size(); double ad_sum = 0; for (int i = 0; i < n; i++) { ad_sum += (2 * i + 1) * std::log(random_sample[i] * (1 - random_sample[n - 1 - i])); } double ad_statistic = -n - 1 / static_cast<double>(n) * ad_sum; return ad_statistic; } // Tests if the array of doubles is uniformly distributed. // Returns the p-value of the Anderson Darling Statistic // for the given set of sorted random doubles // See "Evaluating the Anderson-Darling Distribution" by // Marsaglia and Marsaglia for details. double AndersonDarlingTest(const std::vector<double>& random_sample) { double ad_statistic = AndersonDarlingStatistic(random_sample); double p = AndersonDarlingPValue(random_sample.size(), ad_statistic); return p; } TEST(ExponentialBiasedTest, CoinTossDemoWithGetSkipCount) { ExponentialBiased eb; for (int runs = 0; runs < 10; ++runs) { for (int flips = eb.GetSkipCount(1); flips > 0; --flips) { printf("head..."); } printf("tail\n"); } int heads = 0; for (int i = 0; i < 10000000; i += 1 + eb.GetSkipCount(1)) { ++heads; } printf("Heads = %d (%f%%)\n", heads, 100.0 * heads / 10000000); } TEST(ExponentialBiasedTest, SampleDemoWithStride) { ExponentialBiased eb; int stride = eb.GetStride(10); int samples = 0; for (int i = 0; i < 10000000; ++i) { if (--stride == 0) { ++samples; stride = eb.GetStride(10); } } printf("Samples = %d (%f%%)\n", samples, 100.0 * samples / 10000000); } // Testing that NextRandom generates uniform random numbers. Applies the // Anderson-Darling test for uniformity TEST(ExponentialBiasedTest, TestNextRandom) { for (auto n : std::vector<int>({ 10, // Check short-range correlation 100, 1000, 10000 // Make sure there's no systemic error })) { uint64_t x = 1; // This assumes that the prng returns 48 bit numbers uint64_t max_prng_value = static_cast<uint64_t>(1) << 48; // Initialize. for (int i = 1; i <= 20; i++) { x = ExponentialBiased::NextRandom(x); } std::vector<uint64_t> int_random_sample(n); // Collect samples for (int i = 0; i < n; i++) { int_random_sample[i] = x; x = ExponentialBiased::NextRandom(x); } // First sort them... std::sort(int_random_sample.begin(), int_random_sample.end()); std::vector<double> random_sample(n); // Convert them to uniform randoms (in the range [0,1]) for (int i = 0; i < n; i++) { random_sample[i] = static_cast<double>(int_random_sample[i]) / max_prng_value; } // Now compute the Anderson-Darling statistic double ad_pvalue = AndersonDarlingTest(random_sample); EXPECT_GT(std::min(ad_pvalue, 1 - ad_pvalue), 0.0001) << "prng is not uniform: n = " << n << " p = " << ad_pvalue; } } // The generator needs to be available as a thread_local and as a static // variable. TEST(ExponentialBiasedTest, InitializationModes) { ABSL_CONST_INIT static ExponentialBiased eb_static; EXPECT_THAT(eb_static.GetSkipCount(2), Ge(0)); #ifdef ABSL_HAVE_THREAD_LOCAL thread_local ExponentialBiased eb_thread; EXPECT_THAT(eb_thread.GetSkipCount(2), Ge(0)); #endif ExponentialBiased eb_stack; EXPECT_THAT(eb_stack.GetSkipCount(2), Ge(0)); } } // namespace base_internal ABSL_NAMESPACE_END } // namespace absl