// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: container.h // ----------------------------------------------------------------------------- // // This header file provides Container-based versions of algorithmic functions // within the C++ standard library. The following standard library sets of // functions are covered within this file: // // * Algorithmic <iterator> functions // * Algorithmic <numeric> functions // * <algorithm> functions // // The standard library functions operate on iterator ranges; the functions // within this API operate on containers, though many return iterator ranges. // // All functions within this API are named with a `c_` prefix. Calls such as // `absl::c_xx(container, ...) are equivalent to std:: functions such as // `std::xx(std::begin(cont), std::end(cont), ...)`. Functions that act on // iterators but not conceptually on iterator ranges (e.g. `std::iter_swap`) // have no equivalent here. // // For template parameter and variable naming, `C` indicates the container type // to which the function is applied, `Pred` indicates the predicate object type // to be used by the function and `T` indicates the applicable element type. #ifndef ABSL_ALGORITHM_CONTAINER_H_ #define ABSL_ALGORITHM_CONTAINER_H_ #include <algorithm> #include <cassert> #include <iterator> #include <numeric> #include <type_traits> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include "absl/algorithm/algorithm.h" #include "absl/base/macros.h" #include "absl/meta/type_traits.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace container_algorithm_internal { // NOTE: it is important to defer to ADL lookup for building with C++ modules, // especially for headers like <valarray> which are not visible from this file // but specialize std::begin and std::end. using std::begin; using std::end; // The type of the iterator given by begin(c) (possibly std::begin(c)). // ContainerIter<const vector<T>> gives vector<T>::const_iterator, // while ContainerIter<vector<T>> gives vector<T>::iterator. template <typename C> using ContainerIter = decltype(begin(std::declval<C&>())); // An MSVC bug involving template parameter substitution requires us to use // decltype() here instead of just std::pair. template <typename C1, typename C2> using ContainerIterPairType = decltype(std::make_pair(ContainerIter<C1>(), ContainerIter<C2>())); template <typename C> using ContainerDifferenceType = decltype(std::distance(std::declval<ContainerIter<C>>(), std::declval<ContainerIter<C>>())); template <typename C> using ContainerPointerType = typename std::iterator_traits<ContainerIter<C>>::pointer; // container_algorithm_internal::c_begin and // container_algorithm_internal::c_end are abbreviations for proper ADL // lookup of std::begin and std::end, i.e. // using std::begin; // using std::end; // std::foo(begin(c), end(c); // becomes // std::foo(container_algorithm_internal::begin(c), // container_algorithm_internal::end(c)); // These are meant for internal use only. template <typename C> ContainerIter<C> c_begin(C& c) { return begin(c); } template <typename C> ContainerIter<C> c_end(C& c) { return end(c); } template <typename T> struct IsUnorderedContainer : std::false_type {}; template <class Key, class T, class Hash, class KeyEqual, class Allocator> struct IsUnorderedContainer< std::unordered_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {}; template <class Key, class Hash, class KeyEqual, class Allocator> struct IsUnorderedContainer<std::unordered_set<Key, Hash, KeyEqual, Allocator>> : std::true_type {}; // container_algorithm_internal::c_size. It is meant for internal use only. template <class C> auto c_size(C& c) -> decltype(c.size()) { return c.size(); } template <class T, std::size_t N> constexpr std::size_t c_size(T (&)[N]) { return N; } } // namespace container_algorithm_internal // PUBLIC API //------------------------------------------------------------------------------ // Abseil algorithm.h functions //------------------------------------------------------------------------------ // c_linear_search() // // Container-based version of absl::linear_search() for performing a linear // search within a container. template <typename C, typename EqualityComparable> bool c_linear_search(const C& c, EqualityComparable&& value) { return linear_search(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<EqualityComparable>(value)); } //------------------------------------------------------------------------------ // <iterator> algorithms //------------------------------------------------------------------------------ // c_distance() // // Container-based version of the <iterator> `std::distance()` function to // return the number of elements within a container. template <typename C> container_algorithm_internal::ContainerDifferenceType<const C> c_distance( const C& c) { return std::distance(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } //------------------------------------------------------------------------------ // <algorithm> Non-modifying sequence operations //------------------------------------------------------------------------------ // c_all_of() // // Container-based version of the <algorithm> `std::all_of()` function to // test a condition on all elements within a container. template <typename C, typename Pred> bool c_all_of(const C& c, Pred&& pred) { return std::all_of(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_any_of() // // Container-based version of the <algorithm> `std::any_of()` function to // test if any element in a container fulfills a condition. template <typename C, typename Pred> bool c_any_of(const C& c, Pred&& pred) { return std::any_of(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_none_of() // // Container-based version of the <algorithm> `std::none_of()` function to // test if no elements in a container fulfil a condition. template <typename C, typename Pred> bool c_none_of(const C& c, Pred&& pred) { return std::none_of(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_for_each() // // Container-based version of the <algorithm> `std::for_each()` function to // apply a function to a container's elements. template <typename C, typename Function> decay_t<Function> c_for_each(C&& c, Function&& f) { return std::for_each(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Function>(f)); } // c_find() // // Container-based version of the <algorithm> `std::find()` function to find // the first element containing the passed value within a container value. template <typename C, typename T> container_algorithm_internal::ContainerIter<C> c_find(C& c, T&& value) { return std::find(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<T>(value)); } // c_find_if() // // Container-based version of the <algorithm> `std::find_if()` function to find // the first element in a container matching the given condition. template <typename C, typename Pred> container_algorithm_internal::ContainerIter<C> c_find_if(C& c, Pred&& pred) { return std::find_if(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_find_if_not() // // Container-based version of the <algorithm> `std::find_if_not()` function to // find the first element in a container not matching the given condition. template <typename C, typename Pred> container_algorithm_internal::ContainerIter<C> c_find_if_not(C& c, Pred&& pred) { return std::find_if_not(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_find_end() // // Container-based version of the <algorithm> `std::find_end()` function to // find the last subsequence within a container. template <typename Sequence1, typename Sequence2> container_algorithm_internal::ContainerIter<Sequence1> c_find_end( Sequence1& sequence, Sequence2& subsequence) { return std::find_end(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), container_algorithm_internal::c_begin(subsequence), container_algorithm_internal::c_end(subsequence)); } // Overload of c_find_end() for using a predicate evaluation other than `==` as // the function's test condition. template <typename Sequence1, typename Sequence2, typename BinaryPredicate> container_algorithm_internal::ContainerIter<Sequence1> c_find_end( Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) { return std::find_end(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), container_algorithm_internal::c_begin(subsequence), container_algorithm_internal::c_end(subsequence), std::forward<BinaryPredicate>(pred)); } // c_find_first_of() // // Container-based version of the <algorithm> `std::find_first_of()` function to // find the first element within the container that is also within the options // container. template <typename C1, typename C2> container_algorithm_internal::ContainerIter<C1> c_find_first_of(C1& container, C2& options) { return std::find_first_of(container_algorithm_internal::c_begin(container), container_algorithm_internal::c_end(container), container_algorithm_internal::c_begin(options), container_algorithm_internal::c_end(options)); } // Overload of c_find_first_of() for using a predicate evaluation other than // `==` as the function's test condition. template <typename C1, typename C2, typename BinaryPredicate> container_algorithm_internal::ContainerIter<C1> c_find_first_of( C1& container, C2& options, BinaryPredicate&& pred) { return std::find_first_of(container_algorithm_internal::c_begin(container), container_algorithm_internal::c_end(container), container_algorithm_internal::c_begin(options), container_algorithm_internal::c_end(options), std::forward<BinaryPredicate>(pred)); } // c_adjacent_find() // // Container-based version of the <algorithm> `std::adjacent_find()` function to // find equal adjacent elements within a container. template <typename Sequence> container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find( Sequence& sequence) { return std::adjacent_find(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_adjacent_find() for using a predicate evaluation other than // `==` as the function's test condition. template <typename Sequence, typename BinaryPredicate> container_algorithm_internal::ContainerIter<Sequence> c_adjacent_find( Sequence& sequence, BinaryPredicate&& pred) { return std::adjacent_find(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<BinaryPredicate>(pred)); } // c_count() // // Container-based version of the <algorithm> `std::count()` function to count // values that match within a container. template <typename C, typename T> container_algorithm_internal::ContainerDifferenceType<const C> c_count( const C& c, T&& value) { return std::count(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<T>(value)); } // c_count_if() // // Container-based version of the <algorithm> `std::count_if()` function to // count values matching a condition within a container. template <typename C, typename Pred> container_algorithm_internal::ContainerDifferenceType<const C> c_count_if( const C& c, Pred&& pred) { return std::count_if(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_mismatch() // // Container-based version of the <algorithm> `std::mismatch()` function to // return the first element where two ordered containers differ. template <typename C1, typename C2> container_algorithm_internal::ContainerIterPairType<C1, C2> c_mismatch(C1& c1, C2& c2) { return std::mismatch(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2)); } // Overload of c_mismatch() for using a predicate evaluation other than `==` as // the function's test condition. template <typename C1, typename C2, typename BinaryPredicate> container_algorithm_internal::ContainerIterPairType<C1, C2> c_mismatch(C1& c1, C2& c2, BinaryPredicate&& pred) { return std::mismatch(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), std::forward<BinaryPredicate>(pred)); } // c_equal() // // Container-based version of the <algorithm> `std::equal()` function to // test whether two containers are equal. // // NOTE: the semantics of c_equal() are slightly different than those of // equal(): while the latter iterates over the second container only up to the // size of the first container, c_equal() also checks whether the container // sizes are equal. This better matches expectations about c_equal() based on // its signature. // // Example: // vector v1 = <1, 2, 3>; // vector v2 = <1, 2, 3, 4>; // equal(std::begin(v1), std::end(v1), std::begin(v2)) returns true // c_equal(v1, v2) returns false template <typename C1, typename C2> bool c_equal(const C1& c1, const C2& c2) { return ((container_algorithm_internal::c_size(c1) == container_algorithm_internal::c_size(c2)) && std::equal(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2))); } // Overload of c_equal() for using a predicate evaluation other than `==` as // the function's test condition. template <typename C1, typename C2, typename BinaryPredicate> bool c_equal(const C1& c1, const C2& c2, BinaryPredicate&& pred) { return ((container_algorithm_internal::c_size(c1) == container_algorithm_internal::c_size(c2)) && std::equal(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), std::forward<BinaryPredicate>(pred))); } // c_is_permutation() // // Container-based version of the <algorithm> `std::is_permutation()` function // to test whether a container is a permutation of another. template <typename C1, typename C2> bool c_is_permutation(const C1& c1, const C2& c2) { using std::begin; using std::end; return c1.size() == c2.size() && std::is_permutation(begin(c1), end(c1), begin(c2)); } // Overload of c_is_permutation() for using a predicate evaluation other than // `==` as the function's test condition. template <typename C1, typename C2, typename BinaryPredicate> bool c_is_permutation(const C1& c1, const C2& c2, BinaryPredicate&& pred) { using std::begin; using std::end; return c1.size() == c2.size() && std::is_permutation(begin(c1), end(c1), begin(c2), std::forward<BinaryPredicate>(pred)); } // c_search() // // Container-based version of the <algorithm> `std::search()` function to search // a container for a subsequence. template <typename Sequence1, typename Sequence2> container_algorithm_internal::ContainerIter<Sequence1> c_search( Sequence1& sequence, Sequence2& subsequence) { return std::search(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), container_algorithm_internal::c_begin(subsequence), container_algorithm_internal::c_end(subsequence)); } // Overload of c_search() for using a predicate evaluation other than // `==` as the function's test condition. template <typename Sequence1, typename Sequence2, typename BinaryPredicate> container_algorithm_internal::ContainerIter<Sequence1> c_search( Sequence1& sequence, Sequence2& subsequence, BinaryPredicate&& pred) { return std::search(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), container_algorithm_internal::c_begin(subsequence), container_algorithm_internal::c_end(subsequence), std::forward<BinaryPredicate>(pred)); } // c_search_n() // // Container-based version of the <algorithm> `std::search_n()` function to // search a container for the first sequence of N elements. template <typename Sequence, typename Size, typename T> container_algorithm_internal::ContainerIter<Sequence> c_search_n( Sequence& sequence, Size count, T&& value) { return std::search_n(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), count, std::forward<T>(value)); } // Overload of c_search_n() for using a predicate evaluation other than // `==` as the function's test condition. template <typename Sequence, typename Size, typename T, typename BinaryPredicate> container_algorithm_internal::ContainerIter<Sequence> c_search_n( Sequence& sequence, Size count, T&& value, BinaryPredicate&& pred) { return std::search_n(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), count, std::forward<T>(value), std::forward<BinaryPredicate>(pred)); } //------------------------------------------------------------------------------ // <algorithm> Modifying sequence operations //------------------------------------------------------------------------------ // c_copy() // // Container-based version of the <algorithm> `std::copy()` function to copy a // container's elements into an iterator. template <typename InputSequence, typename OutputIterator> OutputIterator c_copy(const InputSequence& input, OutputIterator output) { return std::copy(container_algorithm_internal::c_begin(input), container_algorithm_internal::c_end(input), output); } // c_copy_n() // // Container-based version of the <algorithm> `std::copy_n()` function to copy a // container's first N elements into an iterator. template <typename C, typename Size, typename OutputIterator> OutputIterator c_copy_n(const C& input, Size n, OutputIterator output) { return std::copy_n(container_algorithm_internal::c_begin(input), n, output); } // c_copy_if() // // Container-based version of the <algorithm> `std::copy_if()` function to copy // a container's elements satisfying some condition into an iterator. template <typename InputSequence, typename OutputIterator, typename Pred> OutputIterator c_copy_if(const InputSequence& input, OutputIterator output, Pred&& pred) { return std::copy_if(container_algorithm_internal::c_begin(input), container_algorithm_internal::c_end(input), output, std::forward<Pred>(pred)); } // c_copy_backward() // // Container-based version of the <algorithm> `std::copy_backward()` function to // copy a container's elements in reverse order into an iterator. template <typename C, typename BidirectionalIterator> BidirectionalIterator c_copy_backward(const C& src, BidirectionalIterator dest) { return std::copy_backward(container_algorithm_internal::c_begin(src), container_algorithm_internal::c_end(src), dest); } // c_move() // // Container-based version of the <algorithm> `std::move()` function to move // a container's elements into an iterator. template <typename C, typename OutputIterator> OutputIterator c_move(C&& src, OutputIterator dest) { return std::move(container_algorithm_internal::c_begin(src), container_algorithm_internal::c_end(src), dest); } // c_move_backward() // // Container-based version of the <algorithm> `std::move_backward()` function to // move a container's elements into an iterator in reverse order. template <typename C, typename BidirectionalIterator> BidirectionalIterator c_move_backward(C&& src, BidirectionalIterator dest) { return std::move_backward(container_algorithm_internal::c_begin(src), container_algorithm_internal::c_end(src), dest); } // c_swap_ranges() // // Container-based version of the <algorithm> `std::swap_ranges()` function to // swap a container's elements with another container's elements. template <typename C1, typename C2> container_algorithm_internal::ContainerIter<C2> c_swap_ranges(C1& c1, C2& c2) { return std::swap_ranges(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2)); } // c_transform() // // Container-based version of the <algorithm> `std::transform()` function to // transform a container's elements using the unary operation, storing the // result in an iterator pointing to the last transformed element in the output // range. template <typename InputSequence, typename OutputIterator, typename UnaryOp> OutputIterator c_transform(const InputSequence& input, OutputIterator output, UnaryOp&& unary_op) { return std::transform(container_algorithm_internal::c_begin(input), container_algorithm_internal::c_end(input), output, std::forward<UnaryOp>(unary_op)); } // Overload of c_transform() for performing a transformation using a binary // predicate. template <typename InputSequence1, typename InputSequence2, typename OutputIterator, typename BinaryOp> OutputIterator c_transform(const InputSequence1& input1, const InputSequence2& input2, OutputIterator output, BinaryOp&& binary_op) { return std::transform(container_algorithm_internal::c_begin(input1), container_algorithm_internal::c_end(input1), container_algorithm_internal::c_begin(input2), output, std::forward<BinaryOp>(binary_op)); } // c_replace() // // Container-based version of the <algorithm> `std::replace()` function to // replace a container's elements of some value with a new value. The container // is modified in place. template <typename Sequence, typename T> void c_replace(Sequence& sequence, const T& old_value, const T& new_value) { std::replace(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), old_value, new_value); } // c_replace_if() // // Container-based version of the <algorithm> `std::replace_if()` function to // replace a container's elements of some value with a new value based on some // condition. The container is modified in place. template <typename C, typename Pred, typename T> void c_replace_if(C& c, Pred&& pred, T&& new_value) { std::replace_if(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred), std::forward<T>(new_value)); } // c_replace_copy() // // Container-based version of the <algorithm> `std::replace_copy()` function to // replace a container's elements of some value with a new value and return the // results within an iterator. template <typename C, typename OutputIterator, typename T> OutputIterator c_replace_copy(const C& c, OutputIterator result, T&& old_value, T&& new_value) { return std::replace_copy(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), result, std::forward<T>(old_value), std::forward<T>(new_value)); } // c_replace_copy_if() // // Container-based version of the <algorithm> `std::replace_copy_if()` function // to replace a container's elements of some value with a new value based on // some condition, and return the results within an iterator. template <typename C, typename OutputIterator, typename Pred, typename T> OutputIterator c_replace_copy_if(const C& c, OutputIterator result, Pred&& pred, T&& new_value) { return std::replace_copy_if(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), result, std::forward<Pred>(pred), std::forward<T>(new_value)); } // c_fill() // // Container-based version of the <algorithm> `std::fill()` function to fill a // container with some value. template <typename C, typename T> void c_fill(C& c, T&& value) { std::fill(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<T>(value)); } // c_fill_n() // // Container-based version of the <algorithm> `std::fill_n()` function to fill // the first N elements in a container with some value. template <typename C, typename Size, typename T> void c_fill_n(C& c, Size n, T&& value) { std::fill_n(container_algorithm_internal::c_begin(c), n, std::forward<T>(value)); } // c_generate() // // Container-based version of the <algorithm> `std::generate()` function to // assign a container's elements to the values provided by the given generator. template <typename C, typename Generator> void c_generate(C& c, Generator&& gen) { std::generate(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Generator>(gen)); } // c_generate_n() // // Container-based version of the <algorithm> `std::generate_n()` function to // assign a container's first N elements to the values provided by the given // generator. template <typename C, typename Size, typename Generator> container_algorithm_internal::ContainerIter<C> c_generate_n(C& c, Size n, Generator&& gen) { return std::generate_n(container_algorithm_internal::c_begin(c), n, std::forward<Generator>(gen)); } // Note: `c_xx()` <algorithm> container versions for `remove()`, `remove_if()`, // and `unique()` are omitted, because it's not clear whether or not such // functions should call erase on their supplied sequences afterwards. Either // behavior would be surprising for a different set of users. // c_remove_copy() // // Container-based version of the <algorithm> `std::remove_copy()` function to // copy a container's elements while removing any elements matching the given // `value`. template <typename C, typename OutputIterator, typename T> OutputIterator c_remove_copy(const C& c, OutputIterator result, T&& value) { return std::remove_copy(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), result, std::forward<T>(value)); } // c_remove_copy_if() // // Container-based version of the <algorithm> `std::remove_copy_if()` function // to copy a container's elements while removing any elements matching the given // condition. template <typename C, typename OutputIterator, typename Pred> OutputIterator c_remove_copy_if(const C& c, OutputIterator result, Pred&& pred) { return std::remove_copy_if(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), result, std::forward<Pred>(pred)); } // c_unique_copy() // // Container-based version of the <algorithm> `std::unique_copy()` function to // copy a container's elements while removing any elements containing duplicate // values. template <typename C, typename OutputIterator> OutputIterator c_unique_copy(const C& c, OutputIterator result) { return std::unique_copy(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), result); } // Overload of c_unique_copy() for using a predicate evaluation other than // `==` for comparing uniqueness of the element values. template <typename C, typename OutputIterator, typename BinaryPredicate> OutputIterator c_unique_copy(const C& c, OutputIterator result, BinaryPredicate&& pred) { return std::unique_copy(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), result, std::forward<BinaryPredicate>(pred)); } // c_reverse() // // Container-based version of the <algorithm> `std::reverse()` function to // reverse a container's elements. template <typename Sequence> void c_reverse(Sequence& sequence) { std::reverse(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // c_reverse_copy() // // Container-based version of the <algorithm> `std::reverse()` function to // reverse a container's elements and write them to an iterator range. template <typename C, typename OutputIterator> OutputIterator c_reverse_copy(const C& sequence, OutputIterator result) { return std::reverse_copy(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), result); } // c_rotate() // // Container-based version of the <algorithm> `std::rotate()` function to // shift a container's elements leftward such that the `middle` element becomes // the first element in the container. template <typename C, typename Iterator = container_algorithm_internal::ContainerIter<C>> Iterator c_rotate(C& sequence, Iterator middle) { return absl::rotate(container_algorithm_internal::c_begin(sequence), middle, container_algorithm_internal::c_end(sequence)); } // c_rotate_copy() // // Container-based version of the <algorithm> `std::rotate_copy()` function to // shift a container's elements leftward such that the `middle` element becomes // the first element in a new iterator range. template <typename C, typename OutputIterator> OutputIterator c_rotate_copy( const C& sequence, container_algorithm_internal::ContainerIter<const C> middle, OutputIterator result) { return std::rotate_copy(container_algorithm_internal::c_begin(sequence), middle, container_algorithm_internal::c_end(sequence), result); } // c_shuffle() // // Container-based version of the <algorithm> `std::shuffle()` function to // randomly shuffle elements within the container using a `gen()` uniform random // number generator. template <typename RandomAccessContainer, typename UniformRandomBitGenerator> void c_shuffle(RandomAccessContainer& c, UniformRandomBitGenerator&& gen) { std::shuffle(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<UniformRandomBitGenerator>(gen)); } //------------------------------------------------------------------------------ // <algorithm> Partition functions //------------------------------------------------------------------------------ // c_is_partitioned() // // Container-based version of the <algorithm> `std::is_partitioned()` function // to test whether all elements in the container for which `pred` returns `true` // precede those for which `pred` is `false`. template <typename C, typename Pred> bool c_is_partitioned(const C& c, Pred&& pred) { return std::is_partitioned(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_partition() // // Container-based version of the <algorithm> `std::partition()` function // to rearrange all elements in a container in such a way that all elements for // which `pred` returns `true` precede all those for which it returns `false`, // returning an iterator to the first element of the second group. template <typename C, typename Pred> container_algorithm_internal::ContainerIter<C> c_partition(C& c, Pred&& pred) { return std::partition(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_stable_partition() // // Container-based version of the <algorithm> `std::stable_partition()` function // to rearrange all elements in a container in such a way that all elements for // which `pred` returns `true` precede all those for which it returns `false`, // preserving the relative ordering between the two groups. The function returns // an iterator to the first element of the second group. template <typename C, typename Pred> container_algorithm_internal::ContainerIter<C> c_stable_partition(C& c, Pred&& pred) { return std::stable_partition(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } // c_partition_copy() // // Container-based version of the <algorithm> `std::partition_copy()` function // to partition a container's elements and return them into two iterators: one // for which `pred` returns `true`, and one for which `pred` returns `false.` template <typename C, typename OutputIterator1, typename OutputIterator2, typename Pred> std::pair<OutputIterator1, OutputIterator2> c_partition_copy( const C& c, OutputIterator1 out_true, OutputIterator2 out_false, Pred&& pred) { return std::partition_copy(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), out_true, out_false, std::forward<Pred>(pred)); } // c_partition_point() // // Container-based version of the <algorithm> `std::partition_point()` function // to return the first element of an already partitioned container for which // the given `pred` is not `true`. template <typename C, typename Pred> container_algorithm_internal::ContainerIter<C> c_partition_point(C& c, Pred&& pred) { return std::partition_point(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Pred>(pred)); } //------------------------------------------------------------------------------ // <algorithm> Sorting functions //------------------------------------------------------------------------------ // c_sort() // // Container-based version of the <algorithm> `std::sort()` function // to sort elements in ascending order of their values. template <typename C> void c_sort(C& c) { std::sort(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } // Overload of c_sort() for performing a `comp` comparison other than the // default `operator<`. template <typename C, typename Compare> void c_sort(C& c, Compare&& comp) { std::sort(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } // c_stable_sort() // // Container-based version of the <algorithm> `std::stable_sort()` function // to sort elements in ascending order of their values, preserving the order // of equivalents. template <typename C> void c_stable_sort(C& c) { std::stable_sort(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } // Overload of c_stable_sort() for performing a `comp` comparison other than the // default `operator<`. template <typename C, typename Compare> void c_stable_sort(C& c, Compare&& comp) { std::stable_sort(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } // c_is_sorted() // // Container-based version of the <algorithm> `std::is_sorted()` function // to evaluate whether the given container is sorted in ascending order. template <typename C> bool c_is_sorted(const C& c) { return std::is_sorted(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } // c_is_sorted() overload for performing a `comp` comparison other than the // default `operator<`. template <typename C, typename Compare> bool c_is_sorted(const C& c, Compare&& comp) { return std::is_sorted(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } // c_partial_sort() // // Container-based version of the <algorithm> `std::partial_sort()` function // to rearrange elements within a container such that elements before `middle` // are sorted in ascending order. template <typename RandomAccessContainer> void c_partial_sort( RandomAccessContainer& sequence, container_algorithm_internal::ContainerIter<RandomAccessContainer> middle) { std::partial_sort(container_algorithm_internal::c_begin(sequence), middle, container_algorithm_internal::c_end(sequence)); } // Overload of c_partial_sort() for performing a `comp` comparison other than // the default `operator<`. template <typename RandomAccessContainer, typename Compare> void c_partial_sort( RandomAccessContainer& sequence, container_algorithm_internal::ContainerIter<RandomAccessContainer> middle, Compare&& comp) { std::partial_sort(container_algorithm_internal::c_begin(sequence), middle, container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_partial_sort_copy() // // Container-based version of the <algorithm> `std::partial_sort_copy()` // function to sort elements within a container such that elements before // `middle` are sorted in ascending order, and return the result within an // iterator. template <typename C, typename RandomAccessContainer> container_algorithm_internal::ContainerIter<RandomAccessContainer> c_partial_sort_copy(const C& sequence, RandomAccessContainer& result) { return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), container_algorithm_internal::c_begin(result), container_algorithm_internal::c_end(result)); } // Overload of c_partial_sort_copy() for performing a `comp` comparison other // than the default `operator<`. template <typename C, typename RandomAccessContainer, typename Compare> container_algorithm_internal::ContainerIter<RandomAccessContainer> c_partial_sort_copy(const C& sequence, RandomAccessContainer& result, Compare&& comp) { return std::partial_sort_copy(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), container_algorithm_internal::c_begin(result), container_algorithm_internal::c_end(result), std::forward<Compare>(comp)); } // c_is_sorted_until() // // Container-based version of the <algorithm> `std::is_sorted_until()` function // to return the first element within a container that is not sorted in // ascending order as an iterator. template <typename C> container_algorithm_internal::ContainerIter<C> c_is_sorted_until(C& c) { return std::is_sorted_until(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } // Overload of c_is_sorted_until() for performing a `comp` comparison other than // the default `operator<`. template <typename C, typename Compare> container_algorithm_internal::ContainerIter<C> c_is_sorted_until( C& c, Compare&& comp) { return std::is_sorted_until(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } // c_nth_element() // // Container-based version of the <algorithm> `std::nth_element()` function // to rearrange the elements within a container such that the `nth` element // would be in that position in an ordered sequence; other elements may be in // any order, except that all preceding `nth` will be less than that element, // and all following `nth` will be greater than that element. template <typename RandomAccessContainer> void c_nth_element( RandomAccessContainer& sequence, container_algorithm_internal::ContainerIter<RandomAccessContainer> nth) { std::nth_element(container_algorithm_internal::c_begin(sequence), nth, container_algorithm_internal::c_end(sequence)); } // Overload of c_nth_element() for performing a `comp` comparison other than // the default `operator<`. template <typename RandomAccessContainer, typename Compare> void c_nth_element( RandomAccessContainer& sequence, container_algorithm_internal::ContainerIter<RandomAccessContainer> nth, Compare&& comp) { std::nth_element(container_algorithm_internal::c_begin(sequence), nth, container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } //------------------------------------------------------------------------------ // <algorithm> Binary Search //------------------------------------------------------------------------------ // c_lower_bound() // // Container-based version of the <algorithm> `std::lower_bound()` function // to return an iterator pointing to the first element in a sorted container // which does not compare less than `value`. template <typename Sequence, typename T> container_algorithm_internal::ContainerIter<Sequence> c_lower_bound( Sequence& sequence, T&& value) { return std::lower_bound(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value)); } // Overload of c_lower_bound() for performing a `comp` comparison other than // the default `operator<`. template <typename Sequence, typename T, typename Compare> container_algorithm_internal::ContainerIter<Sequence> c_lower_bound( Sequence& sequence, T&& value, Compare&& comp) { return std::lower_bound(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value), std::forward<Compare>(comp)); } // c_upper_bound() // // Container-based version of the <algorithm> `std::upper_bound()` function // to return an iterator pointing to the first element in a sorted container // which is greater than `value`. template <typename Sequence, typename T> container_algorithm_internal::ContainerIter<Sequence> c_upper_bound( Sequence& sequence, T&& value) { return std::upper_bound(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value)); } // Overload of c_upper_bound() for performing a `comp` comparison other than // the default `operator<`. template <typename Sequence, typename T, typename Compare> container_algorithm_internal::ContainerIter<Sequence> c_upper_bound( Sequence& sequence, T&& value, Compare&& comp) { return std::upper_bound(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value), std::forward<Compare>(comp)); } // c_equal_range() // // Container-based version of the <algorithm> `std::equal_range()` function // to return an iterator pair pointing to the first and last elements in a // sorted container which compare equal to `value`. template <typename Sequence, typename T> container_algorithm_internal::ContainerIterPairType<Sequence, Sequence> c_equal_range(Sequence& sequence, T&& value) { return std::equal_range(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value)); } // Overload of c_equal_range() for performing a `comp` comparison other than // the default `operator<`. template <typename Sequence, typename T, typename Compare> container_algorithm_internal::ContainerIterPairType<Sequence, Sequence> c_equal_range(Sequence& sequence, T&& value, Compare&& comp) { return std::equal_range(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value), std::forward<Compare>(comp)); } // c_binary_search() // // Container-based version of the <algorithm> `std::binary_search()` function // to test if any element in the sorted container contains a value equivalent to // 'value'. template <typename Sequence, typename T> bool c_binary_search(Sequence&& sequence, T&& value) { return std::binary_search(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value)); } // Overload of c_binary_search() for performing a `comp` comparison other than // the default `operator<`. template <typename Sequence, typename T, typename Compare> bool c_binary_search(Sequence&& sequence, T&& value, Compare&& comp) { return std::binary_search(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value), std::forward<Compare>(comp)); } //------------------------------------------------------------------------------ // <algorithm> Merge functions //------------------------------------------------------------------------------ // c_merge() // // Container-based version of the <algorithm> `std::merge()` function // to merge two sorted containers into a single sorted iterator. template <typename C1, typename C2, typename OutputIterator> OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result) { return std::merge(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), result); } // Overload of c_merge() for performing a `comp` comparison other than // the default `operator<`. template <typename C1, typename C2, typename OutputIterator, typename Compare> OutputIterator c_merge(const C1& c1, const C2& c2, OutputIterator result, Compare&& comp) { return std::merge(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), result, std::forward<Compare>(comp)); } // c_inplace_merge() // // Container-based version of the <algorithm> `std::inplace_merge()` function // to merge a supplied iterator `middle` into a container. template <typename C> void c_inplace_merge(C& c, container_algorithm_internal::ContainerIter<C> middle) { std::inplace_merge(container_algorithm_internal::c_begin(c), middle, container_algorithm_internal::c_end(c)); } // Overload of c_inplace_merge() for performing a merge using a `comp` other // than `operator<`. template <typename C, typename Compare> void c_inplace_merge(C& c, container_algorithm_internal::ContainerIter<C> middle, Compare&& comp) { std::inplace_merge(container_algorithm_internal::c_begin(c), middle, container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } // c_includes() // // Container-based version of the <algorithm> `std::includes()` function // to test whether a sorted container `c1` entirely contains another sorted // container `c2`. template <typename C1, typename C2> bool c_includes(const C1& c1, const C2& c2) { return std::includes(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2)); } // Overload of c_includes() for performing a merge using a `comp` other than // `operator<`. template <typename C1, typename C2, typename Compare> bool c_includes(const C1& c1, const C2& c2, Compare&& comp) { return std::includes(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), std::forward<Compare>(comp)); } // c_set_union() // // Container-based version of the <algorithm> `std::set_union()` function // to return an iterator containing the union of two containers; duplicate // values are not copied into the output. template <typename C1, typename C2, typename OutputIterator, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output) { return std::set_union(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output); } // Overload of c_set_union() for performing a merge using a `comp` other than // `operator<`. template <typename C1, typename C2, typename OutputIterator, typename Compare, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_union(const C1& c1, const C2& c2, OutputIterator output, Compare&& comp) { return std::set_union(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output, std::forward<Compare>(comp)); } // c_set_intersection() // // Container-based version of the <algorithm> `std::set_intersection()` function // to return an iterator containing the intersection of two containers. template <typename C1, typename C2, typename OutputIterator, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_intersection(const C1& c1, const C2& c2, OutputIterator output) { return std::set_intersection(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output); } // Overload of c_set_intersection() for performing a merge using a `comp` other // than `operator<`. template <typename C1, typename C2, typename OutputIterator, typename Compare, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_intersection(const C1& c1, const C2& c2, OutputIterator output, Compare&& comp) { return std::set_intersection(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output, std::forward<Compare>(comp)); } // c_set_difference() // // Container-based version of the <algorithm> `std::set_difference()` function // to return an iterator containing elements present in the first container but // not in the second. template <typename C1, typename C2, typename OutputIterator, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_difference(const C1& c1, const C2& c2, OutputIterator output) { return std::set_difference(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output); } // Overload of c_set_difference() for performing a merge using a `comp` other // than `operator<`. template <typename C1, typename C2, typename OutputIterator, typename Compare, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_difference(const C1& c1, const C2& c2, OutputIterator output, Compare&& comp) { return std::set_difference(container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output, std::forward<Compare>(comp)); } // c_set_symmetric_difference() // // Container-based version of the <algorithm> `std::set_symmetric_difference()` // function to return an iterator containing elements present in either one // container or the other, but not both. template <typename C1, typename C2, typename OutputIterator, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2, OutputIterator output) { return std::set_symmetric_difference( container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output); } // Overload of c_set_symmetric_difference() for performing a merge using a // `comp` other than `operator<`. template <typename C1, typename C2, typename OutputIterator, typename Compare, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C1>::value, void>::type, typename = typename std::enable_if< !container_algorithm_internal::IsUnorderedContainer<C2>::value, void>::type> OutputIterator c_set_symmetric_difference(const C1& c1, const C2& c2, OutputIterator output, Compare&& comp) { return std::set_symmetric_difference( container_algorithm_internal::c_begin(c1), container_algorithm_internal::c_end(c1), container_algorithm_internal::c_begin(c2), container_algorithm_internal::c_end(c2), output, std::forward<Compare>(comp)); } //------------------------------------------------------------------------------ // <algorithm> Heap functions //------------------------------------------------------------------------------ // c_push_heap() // // Container-based version of the <algorithm> `std::push_heap()` function // to push a value onto a container heap. template <typename RandomAccessContainer> void c_push_heap(RandomAccessContainer& sequence) { std::push_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_push_heap() for performing a push operation on a heap using a // `comp` other than `operator<`. template <typename RandomAccessContainer, typename Compare> void c_push_heap(RandomAccessContainer& sequence, Compare&& comp) { std::push_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_pop_heap() // // Container-based version of the <algorithm> `std::pop_heap()` function // to pop a value from a heap container. template <typename RandomAccessContainer> void c_pop_heap(RandomAccessContainer& sequence) { std::pop_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_pop_heap() for performing a pop operation on a heap using a // `comp` other than `operator<`. template <typename RandomAccessContainer, typename Compare> void c_pop_heap(RandomAccessContainer& sequence, Compare&& comp) { std::pop_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_make_heap() // // Container-based version of the <algorithm> `std::make_heap()` function // to make a container a heap. template <typename RandomAccessContainer> void c_make_heap(RandomAccessContainer& sequence) { std::make_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_make_heap() for performing heap comparisons using a // `comp` other than `operator<` template <typename RandomAccessContainer, typename Compare> void c_make_heap(RandomAccessContainer& sequence, Compare&& comp) { std::make_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_sort_heap() // // Container-based version of the <algorithm> `std::sort_heap()` function // to sort a heap into ascending order (after which it is no longer a heap). template <typename RandomAccessContainer> void c_sort_heap(RandomAccessContainer& sequence) { std::sort_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_sort_heap() for performing heap comparisons using a // `comp` other than `operator<` template <typename RandomAccessContainer, typename Compare> void c_sort_heap(RandomAccessContainer& sequence, Compare&& comp) { std::sort_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_is_heap() // // Container-based version of the <algorithm> `std::is_heap()` function // to check whether the given container is a heap. template <typename RandomAccessContainer> bool c_is_heap(const RandomAccessContainer& sequence) { return std::is_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_is_heap() for performing heap comparisons using a // `comp` other than `operator<` template <typename RandomAccessContainer, typename Compare> bool c_is_heap(const RandomAccessContainer& sequence, Compare&& comp) { return std::is_heap(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_is_heap_until() // // Container-based version of the <algorithm> `std::is_heap_until()` function // to find the first element in a given container which is not in heap order. template <typename RandomAccessContainer> container_algorithm_internal::ContainerIter<RandomAccessContainer> c_is_heap_until(RandomAccessContainer& sequence) { return std::is_heap_until(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_is_heap_until() for performing heap comparisons using a // `comp` other than `operator<` template <typename RandomAccessContainer, typename Compare> container_algorithm_internal::ContainerIter<RandomAccessContainer> c_is_heap_until(RandomAccessContainer& sequence, Compare&& comp) { return std::is_heap_until(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } //------------------------------------------------------------------------------ // <algorithm> Min/max //------------------------------------------------------------------------------ // c_min_element() // // Container-based version of the <algorithm> `std::min_element()` function // to return an iterator pointing to the element with the smallest value, using // `operator<` to make the comparisons. template <typename Sequence> container_algorithm_internal::ContainerIter<Sequence> c_min_element( Sequence& sequence) { return std::min_element(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_min_element() for performing a `comp` comparison other than // `operator<`. template <typename Sequence, typename Compare> container_algorithm_internal::ContainerIter<Sequence> c_min_element( Sequence& sequence, Compare&& comp) { return std::min_element(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_max_element() // // Container-based version of the <algorithm> `std::max_element()` function // to return an iterator pointing to the element with the largest value, using // `operator<` to make the comparisons. template <typename Sequence> container_algorithm_internal::ContainerIter<Sequence> c_max_element( Sequence& sequence) { return std::max_element(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence)); } // Overload of c_max_element() for performing a `comp` comparison other than // `operator<`. template <typename Sequence, typename Compare> container_algorithm_internal::ContainerIter<Sequence> c_max_element( Sequence& sequence, Compare&& comp) { return std::max_element(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<Compare>(comp)); } // c_minmax_element() // // Container-based version of the <algorithm> `std::minmax_element()` function // to return a pair of iterators pointing to the elements containing the // smallest and largest values, respectively, using `operator<` to make the // comparisons. template <typename C> container_algorithm_internal::ContainerIterPairType<C, C> c_minmax_element(C& c) { return std::minmax_element(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } // Overload of c_minmax_element() for performing `comp` comparisons other than // `operator<`. template <typename C, typename Compare> container_algorithm_internal::ContainerIterPairType<C, C> c_minmax_element(C& c, Compare&& comp) { return std::minmax_element(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } //------------------------------------------------------------------------------ // <algorithm> Lexicographical Comparisons //------------------------------------------------------------------------------ // c_lexicographical_compare() // // Container-based version of the <algorithm> `std::lexicographical_compare()` // function to lexicographically compare (e.g. sort words alphabetically) two // container sequences. The comparison is performed using `operator<`. Note // that capital letters ("A-Z") have ASCII values less than lowercase letters // ("a-z"). template <typename Sequence1, typename Sequence2> bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2) { return std::lexicographical_compare( container_algorithm_internal::c_begin(sequence1), container_algorithm_internal::c_end(sequence1), container_algorithm_internal::c_begin(sequence2), container_algorithm_internal::c_end(sequence2)); } // Overload of c_lexicographical_compare() for performing a lexicographical // comparison using a `comp` operator instead of `operator<`. template <typename Sequence1, typename Sequence2, typename Compare> bool c_lexicographical_compare(Sequence1&& sequence1, Sequence2&& sequence2, Compare&& comp) { return std::lexicographical_compare( container_algorithm_internal::c_begin(sequence1), container_algorithm_internal::c_end(sequence1), container_algorithm_internal::c_begin(sequence2), container_algorithm_internal::c_end(sequence2), std::forward<Compare>(comp)); } // c_next_permutation() // // Container-based version of the <algorithm> `std::next_permutation()` function // to rearrange a container's elements into the next lexicographically greater // permutation. template <typename C> bool c_next_permutation(C& c) { return std::next_permutation(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } // Overload of c_next_permutation() for performing a lexicographical // comparison using a `comp` operator instead of `operator<`. template <typename C, typename Compare> bool c_next_permutation(C& c, Compare&& comp) { return std::next_permutation(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } // c_prev_permutation() // // Container-based version of the <algorithm> `std::prev_permutation()` function // to rearrange a container's elements into the next lexicographically lesser // permutation. template <typename C> bool c_prev_permutation(C& c) { return std::prev_permutation(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c)); } // Overload of c_prev_permutation() for performing a lexicographical // comparison using a `comp` operator instead of `operator<`. template <typename C, typename Compare> bool c_prev_permutation(C& c, Compare&& comp) { return std::prev_permutation(container_algorithm_internal::c_begin(c), container_algorithm_internal::c_end(c), std::forward<Compare>(comp)); } //------------------------------------------------------------------------------ // <numeric> algorithms //------------------------------------------------------------------------------ // c_iota() // // Container-based version of the <algorithm> `std::iota()` function // to compute successive values of `value`, as if incremented with `++value` // after each element is written. and write them to the container. template <typename Sequence, typename T> void c_iota(Sequence& sequence, T&& value) { std::iota(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(value)); } // c_accumulate() // // Container-based version of the <algorithm> `std::accumulate()` function // to accumulate the element values of a container to `init` and return that // accumulation by value. // // Note: Due to a language technicality this function has return type // absl::decay_t<T>. As a user of this function you can casually read // this as "returns T by value" and assume it does the right thing. template <typename Sequence, typename T> decay_t<T> c_accumulate(const Sequence& sequence, T&& init) { return std::accumulate(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(init)); } // Overload of c_accumulate() for using a binary operations other than // addition for computing the accumulation. template <typename Sequence, typename T, typename BinaryOp> decay_t<T> c_accumulate(const Sequence& sequence, T&& init, BinaryOp&& binary_op) { return std::accumulate(container_algorithm_internal::c_begin(sequence), container_algorithm_internal::c_end(sequence), std::forward<T>(init), std::forward<BinaryOp>(binary_op)); } // c_inner_product() // // Container-based version of the <algorithm> `std::inner_product()` function // to compute the cumulative inner product of container element pairs. // // Note: Due to a language technicality this function has return type // absl::decay_t<T>. As a user of this function you can casually read // this as "returns T by value" and assume it does the right thing. template <typename Sequence1, typename Sequence2, typename T> decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2, T&& sum) { return std::inner_product(container_algorithm_internal::c_begin(factors1), container_algorithm_internal::c_end(factors1), container_algorithm_internal::c_begin(factors2), std::forward<T>(sum)); } // Overload of c_inner_product() for using binary operations other than // `operator+` (for computing the accumulation) and `operator*` (for computing // the product between the two container's element pair). template <typename Sequence1, typename Sequence2, typename T, typename BinaryOp1, typename BinaryOp2> decay_t<T> c_inner_product(const Sequence1& factors1, const Sequence2& factors2, T&& sum, BinaryOp1&& op1, BinaryOp2&& op2) { return std::inner_product(container_algorithm_internal::c_begin(factors1), container_algorithm_internal::c_end(factors1), container_algorithm_internal::c_begin(factors2), std::forward<T>(sum), std::forward<BinaryOp1>(op1), std::forward<BinaryOp2>(op2)); } // c_adjacent_difference() // // Container-based version of the <algorithm> `std::adjacent_difference()` // function to compute the difference between each element and the one preceding // it and write it to an iterator. template <typename InputSequence, typename OutputIt> OutputIt c_adjacent_difference(const InputSequence& input, OutputIt output_first) { return std::adjacent_difference(container_algorithm_internal::c_begin(input), container_algorithm_internal::c_end(input), output_first); } // Overload of c_adjacent_difference() for using a binary operation other than // subtraction to compute the adjacent difference. template <typename InputSequence, typename OutputIt, typename BinaryOp> OutputIt c_adjacent_difference(const InputSequence& input, OutputIt output_first, BinaryOp&& op) { return std::adjacent_difference(container_algorithm_internal::c_begin(input), container_algorithm_internal::c_end(input), output_first, std::forward<BinaryOp>(op)); } // c_partial_sum() // // Container-based version of the <algorithm> `std::partial_sum()` function // to compute the partial sum of the elements in a sequence and write them // to an iterator. The partial sum is the sum of all element values so far in // the sequence. template <typename InputSequence, typename OutputIt> OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first) { return std::partial_sum(container_algorithm_internal::c_begin(input), container_algorithm_internal::c_end(input), output_first); } // Overload of c_partial_sum() for using a binary operation other than addition // to compute the "partial sum". template <typename InputSequence, typename OutputIt, typename BinaryOp> OutputIt c_partial_sum(const InputSequence& input, OutputIt output_first, BinaryOp&& op) { return std::partial_sum(container_algorithm_internal::c_begin(input), container_algorithm_internal::c_end(input), output_first, std::forward<BinaryOp>(op)); } ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_ALGORITHM_CONTAINER_H_