use crate::errors::{report, Error, ErrorKind}; use crate::parser::{self, Declaration, Expr, Literal, Program, Statement}; use crate::scanner::{self, TokenKind}; use std::collections::HashMap; // Run some Lox code and print it to stdout pub fn run(code: &str) { let chars: Vec = code.chars().collect(); match scanner::scan(&chars) { Ok(tokens) => match parser::parse(tokens) { Ok(program) => { let mut interpreter = Interpreter::default(); println!("Program:\n{:?}", program); if let Err(err) = interpreter.interpret(&program) { println!("Error in program: {:?}", err); } } Err(errors) => report_errors(errors), }, Err(errors) => report_errors(errors), } } fn report_errors(errors: Vec) { for error in errors { report(&error); } } // Tree-walk interpreter #[derive(Debug, Default)] struct Environment { values: HashMap, } impl Environment { fn define(&mut self, name: &str, value: Literal) { self.values.insert(name.into(), value); } fn get(&self, name: &parser::Variable) -> Result { if let TokenKind::Identifier(ident) = &name.0.kind { return self .values .get(ident) .map(Clone::clone) .ok_or_else(|| Error { line: name.0.line, kind: ErrorKind::UndefinedVariable(ident.into()), }); } Err(Error { line: name.0.line, kind: ErrorKind::InternalError("unexpected identifier kind".into()), }) } } #[derive(Debug, Default)] struct Interpreter { globals: Environment, } impl Interpreter { fn interpret_stmt<'a>(&self, stmt: &Statement<'a>) -> Result<(), Error> { match stmt { Statement::Expr(expr) => { self.eval(expr)?; } Statement::Print(expr) => { let result = self.eval(expr)?; println!("{:?}", result) } } Ok(()) } fn interpret_var<'a>(&mut self, var: &parser::Var<'a>) -> Result<(), Error> { if let TokenKind::Identifier(ident) = &var.name.kind { let init = var.initialiser.as_ref().ok_or_else(|| Error { line: var.name.line, kind: ErrorKind::InternalError("missing variable initialiser".into()), })?; self.globals.define(ident, self.eval(init)?); return Ok(()); } Err(Error { line: var.name.line, kind: ErrorKind::InternalError("unexpected identifier kind".into()), }) } pub fn interpret<'a>(&mut self, program: &Program<'a>) -> Result<(), Error> { for decl in program { match decl { Declaration::Stmt(stmt) => self.interpret_stmt(stmt)?, Declaration::Var(var) => self.interpret_var(var)?, } } Ok(()) } fn eval<'a>(&self, expr: &Expr<'a>) -> Result { match expr { Expr::Literal(lit) => Ok(lit.clone()), Expr::Grouping(grouping) => self.eval(&*grouping.0), Expr::Unary(unary) => self.eval_unary(unary), Expr::Binary(binary) => self.eval_binary(binary), Expr::Variable(var) => self.globals.get(var), } } fn eval_unary<'a>(&self, expr: &parser::Unary<'a>) -> Result { let right = self.eval(&*expr.right)?; match (&expr.operator.kind, right) { (TokenKind::Minus, Literal::Number(num)) => Ok(Literal::Number(-num)), (TokenKind::Bang, right) => Ok(Literal::Boolean(!eval_truthy(&right))), (op, right) => Err(Error { line: expr.operator.line, kind: ErrorKind::TypeError(format!( "Operator '{:?}' can not be called with argument '{:?}'", op, right )), }), } } fn eval_binary<'a>(&self, expr: &parser::Binary<'a>) -> Result { let left = self.eval(&*expr.left)?; let right = self.eval(&*expr.right)?; let result = match (&expr.operator.kind, left, right) { // Numeric (TokenKind::Minus, Literal::Number(l), Literal::Number(r)) => Literal::Number(l - r), (TokenKind::Slash, Literal::Number(l), Literal::Number(r)) => Literal::Number(l / r), (TokenKind::Star, Literal::Number(l), Literal::Number(r)) => Literal::Number(l * r), (TokenKind::Plus, Literal::Number(l), Literal::Number(r)) => Literal::Number(l + r), // Strings (TokenKind::Plus, Literal::String(l), Literal::String(r)) => { Literal::String(format!("{}{}", l, r)) } // Comparators (on numbers only?) (TokenKind::Greater, Literal::Number(l), Literal::Number(r)) => Literal::Boolean(l > r), (TokenKind::GreaterEqual, Literal::Number(l), Literal::Number(r)) => { Literal::Boolean(l >= r) } (TokenKind::Less, Literal::Number(l), Literal::Number(r)) => Literal::Boolean(l < r), (TokenKind::LessEqual, Literal::Number(l), Literal::Number(r)) => { Literal::Boolean(l <= r) } // Equality (TokenKind::Equal, l, r) => Literal::Boolean(l == r), (TokenKind::BangEqual, l, r) => Literal::Boolean(l != r), (op, left, right) => { return Err(Error { line: expr.operator.line, kind: ErrorKind::TypeError(format!( "Operator '{:?}' can not be called with arguments '({:?}, {:?})'", op, left, right )), }) } }; Ok(result) } } // Interpreter functions not dependent on interpreter-state. fn eval_truthy(lit: &Literal) -> bool { match lit { Literal::Nil => false, Literal::Boolean(b) => *b, _ => true, } }