//! Weave resolves a list of roots from `nixpkgs.roots` against `narinfo.parquet`, //! and then uses the reference graph from the accompanying `narinfo-references.parquet` //! produced by `swizzle` to collect the closure of the roots. //! //! They are written to `live_idxs.parquet`, which only has one column, representing //! the row numbers in `narinfo.parquet` corresponding to live paths. use anyhow::Result; use hashbrown::{hash_table, HashTable}; use nix_compat::nixbase32; use rayon::prelude::*; use std::{ collections::{BTreeMap, HashSet}, fs::{self, File}, ops::Index, sync::atomic::{AtomicU32, Ordering}, }; use polars::{ datatypes::StaticArray, export::arrow::{array::UInt32Array, offset::OffsetsBuffer}, prelude::*, }; use weave::{hash64, DONE, INDEX_NULL}; fn main() -> Result<()> { eprint!("… parse roots\r"); let roots: PathSet32 = { let mut roots = Vec::new(); fs::read("nixpkgs.roots")? .par_chunks_exact(32 + 1) .map(|e| nixbase32::decode_fixed::<20>(&e[0..32]).unwrap()) .collect_into_vec(&mut roots); roots.iter().collect() }; eprintln!("{DONE}"); { let ph_array = weave::load_ph_array()?; eprint!("… resolve roots\r"); ph_array.par_iter().enumerate().for_each(|(idx, h)| { if let Some(idx_slot) = roots.find(h) { assert_eq!( idx_slot.swap(idx as u32, Ordering::Relaxed), INDEX_NULL, "duplicate entry" ); } }); eprintln!("{DONE}"); } let mut todo = HashSet::with_capacity(roots.len()); { let mut unknown_roots = 0usize; for (_, idx) in roots.table { let idx = idx.into_inner(); if idx == INDEX_NULL { unknown_roots += 1; continue; } todo.insert(idx); } println!("skipping {unknown_roots} unknown roots"); } eprint!("… load reference_idxs\r"); let ri_array = ParquetReader::new(File::open("narinfo-references.parquet")?) .finish()? .column("reference_idxs")? .list()? .clone(); let ri_array = { ChunkedList::new(ri_array.downcast_iter().map(|chunk| { ( chunk.offsets(), chunk .values() .as_any() .downcast_ref::() .unwrap() .as_slice() .unwrap(), ) })) }; eprintln!("{DONE}"); let mut seen = todo.clone(); while !todo.is_empty() { println!("todo: {} seen: {}", todo.len(), seen.len()); todo = todo .par_iter() .flat_map(|&parent| { if parent == INDEX_NULL { return vec![]; } ri_array[parent as usize] .iter() .cloned() .filter(|child| !seen.contains(child)) .collect::>() }) .collect(); for &index in &todo { seen.insert(index); } } println!("done: {} paths", seen.len()); if seen.remove(&INDEX_NULL) { println!("WARNING: missing edges"); } eprint!("… gathering live set\r"); let mut seen: Vec = seen.into_iter().collect(); seen.par_sort(); eprintln!("{DONE}"); eprint!("… writing output\r"); ParquetWriter::new(File::create("live_idxs.parquet")?).finish(&mut df! { "live_idx" => seen, }?)?; eprintln!("{DONE}"); Ok(()) } struct PathSet32 { table: HashTable<([u8; 20], AtomicU32)>, } impl PathSet32 { fn with_capacity(capacity: usize) -> Self { Self { table: HashTable::with_capacity(capacity), } } fn insert(&mut self, value: &[u8; 20]) -> bool { let hash = hash64(value); match self .table .entry(hash, |(x, _)| x == value, |(x, _)| hash64(x)) { hash_table::Entry::Occupied(_) => false, hash_table::Entry::Vacant(entry) => { entry.insert((*value, AtomicU32::new(INDEX_NULL))); true } } } fn find(&self, value: &[u8; 20]) -> Option<&AtomicU32> { let hash = hash64(value); self.table .find(hash, |(x, _)| x == value) .as_ref() .map(|(_, x)| x) } fn len(&self) -> usize { self.table.len() } } impl<'a> FromIterator<&'a [u8; 20]> for PathSet32 { fn from_iter>(iter: T) -> Self { let iter = iter.into_iter(); let mut this = Self::with_capacity(iter.size_hint().0); for item in iter { this.insert(item); } this } } struct ChunkedList<'a, T> { by_offset: BTreeMap, &'a [T])>, } impl<'a, T> ChunkedList<'a, T> { fn new(chunks: impl IntoIterator, &'a [T])>) -> Self { let mut next_offset = 0usize; ChunkedList { by_offset: chunks .into_iter() .map(|(offsets, values)| { let offset = next_offset; next_offset = next_offset.checked_add(offsets.len_proxy()).unwrap(); (offset, (offsets, values)) }) .collect(), } } } impl<'a, T> Index for ChunkedList<'a, T> { type Output = [T]; fn index(&self, index: usize) -> &Self::Output { let (&base, &(offsets, values)) = self.by_offset.range(..=index).next_back().unwrap(); let (start, end) = offsets.start_end(index - base); &values[start..end] } }