//! Implements the slightly odd "base32" encoding that's used in Nix. //! //! Nix uses a custom alphabet. Contrary to other implementations (RFC4648), //! encoding to "nix base32" doesn't use any padding, and reads in characters //! in reverse order. //! //! This is also the main reason why we can't use `data_encoding::Encoding` - //! it gets things wrong if there normally would be a need for padding. use std::fmt::Write; use thiserror::Error; const ALPHABET: &'static [u8; 32] = b"0123456789abcdfghijklmnpqrsvwxyz"; /// Errors that can occur while decoding nixbase32-encoded data. #[derive(Debug, Eq, PartialEq, Error)] pub enum Nixbase32DecodeError { #[error("character {0:x} not in alphabet")] CharacterNotInAlphabet(u8), #[error("nonzero carry")] NonzeroCarry(), } /// Returns encoded input pub fn encode(input: &[u8]) -> String { let output_len = encode_len(input.len()); let mut output = String::with_capacity(output_len); if output_len > 0 { for n in (0..=output_len - 1).rev() { let b = n * 5; // bit offset within the entire input let i = b / 8; // input byte index let j = b % 8; // bit offset within that input byte let mut c = input[i] >> j; if i + 1 < input.len() { // we want to right shift, and discard shifted out bits (unchecked) // To do this without panicing, we need to do the shifting in u16 // and convert back to u8 afterwards. c |= ((input[i + 1] as u16) << 8 - j as u16) as u8 } output .write_char(ALPHABET[(c & 0x1f) as usize] as char) .unwrap(); } } output } /// This maps a nixbase32-encoded character to its binary representation, which /// is also the index of the character in the alphabet. fn decode_char(encoded_char: &u8) -> Option { Some(match encoded_char { b'0'..=b'9' => encoded_char - b'0', b'a'..=b'd' => encoded_char - b'a' + 10_u8, b'f'..=b'n' => encoded_char - b'f' + 14_u8, b'p'..=b's' => encoded_char - b'p' + 23_u8, b'v'..=b'z' => encoded_char - b'v' + 27_u8, _ => return None, }) } /// Returns decoded input pub fn decode(input: &[u8]) -> Result, Nixbase32DecodeError> { let output_len = decode_len(input.len()); let mut output: Vec = vec![0x00; output_len]; // loop over all characters in reverse, and keep the iteration count in n. for (n, c) in input.iter().rev().enumerate() { match decode_char(c) { None => return Err(Nixbase32DecodeError::CharacterNotInAlphabet(*c)), Some(c_decoded) => { let b = n * 5; let i = b / 8; let j = b % 8; let val = (c_decoded as u16).rotate_left(j as u32); output[i] |= (val & 0x00ff) as u8; let carry = ((val & 0xff00) >> 8) as u8; // if we're at the end of dst… if i == output_len - 1 { // but have a nonzero carry, the encoding is invalid. if carry != 0 { return Err(Nixbase32DecodeError::NonzeroCarry()); } } else { output[i + 1] |= carry; } } } } Ok(output) } /// Returns the decoded length of an input of length len. pub fn decode_len(len: usize) -> usize { return (len * 5) / 8; } /// Returns the encoded length of an input of length len pub fn encode_len(len: usize) -> usize { if len == 0 { return 0; } return (len * 8 - 1) / 5 + 1; } #[cfg(test)] mod tests { use test_case::test_case; #[test_case("", vec![] ; "empty bytes")] #[test_case("0z", vec![0x1f]; "one byte")] #[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", vec![ 0x8a, 0x12, 0x32, 0x15, 0x22, 0xfd, 0x91, 0xef, 0xbd, 0x60, 0xeb, 0xb2, 0x48, 0x1a, 0xf8, 0x85, 0x80, 0xf6, 0x16, 0x00]; "store path")] #[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", vec![ 0xb3, 0xa2, 0x4d, 0xe9, 0x7a, 0x8f, 0xdb, 0xc8, 0x35, 0xb9, 0x83, 0x31, 0x69, 0x50, 0x10, 0x30, 0xb8, 0x97, 0x70, 0x31, 0xbc, 0xb5, 0x4b, 0x3b, 0x3a, 0xc1, 0x37, 0x40, 0xf8, 0x46, 0xab, 0x30, ]; "sha256")] fn encode(enc: &str, dec: Vec) { assert_eq!(enc, super::encode(&dec)); } #[test_case("", Some(vec![]) ; "empty bytes")] #[test_case("0z", Some(vec![0x1f]); "one byte")] #[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", Some(vec![ 0x8a, 0x12, 0x32, 0x15, 0x22, 0xfd, 0x91, 0xef, 0xbd, 0x60, 0xeb, 0xb2, 0x48, 0x1a, 0xf8, 0x85, 0x80, 0xf6, 0x16, 0x00]); "store path")] #[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", Some(vec![ 0xb3, 0xa2, 0x4d, 0xe9, 0x7a, 0x8f, 0xdb, 0xc8, 0x35, 0xb9, 0x83, 0x31, 0x69, 0x50, 0x10, 0x30, 0xb8, 0x97, 0x70, 0x31, 0xbc, 0xb5, 0x4b, 0x3b, 0x3a, 0xc1, 0x37, 0x40, 0xf8, 0x46, 0xab, 0x30, ]); "sha256")] // this is invalid encoding, because it encodes 10 1-bytes, so the carry // would be 2 1-bytes #[test_case("zz", None; "invalid encoding-1")] // this is an even more specific example - it'd decode as 00000000 11 #[test_case("c0", None; "invalid encoding-2")] fn decode(enc: &str, dec: Option>) { match dec { Some(dec) => { // The decode needs to match what's passed in dec assert_eq!(dec, super::decode(enc.as_bytes()).unwrap()); } None => { // the decode needs to be an error assert_eq!(true, super::decode(enc.as_bytes()).is_err()); } } } #[test] fn encode_len() { assert_eq!(super::encode_len(20), 32) } #[test] fn decode_len() { assert_eq!(super::decode_len(32), 20) } }