//! Simple scanner for non-overlapping, known references of Nix store paths in a
//! given string.
//!
//! This is used for determining build references (see
//! //tvix/eval/docs/build-references.md for more details).
//!
//! The scanner itself is using the Wu-Manber string-matching algorithm, using
//! our fork of the `wu-mamber` crate.
use pin_project::pin_project;
use std::collections::BTreeSet;
use std::pin::Pin;
use std::sync::Arc;
use std::task::{ready, Poll};
use tokio::io::{AsyncBufRead, AsyncRead, ReadBuf};
use wu_manber::TwoByteWM;
/// A searcher that incapsulates the candidates and the Wu-Manber searcher.
/// This is separate from the scanner because we need to look for the same
/// pattern in multiple outputs and don't want to pay the price of constructing
/// the searcher for each build output.
pub struct ReferencePatternInner
{
candidates: Vec
,
longest_candidate: usize,
// FUTUREWORK: Support overlapping patterns to be compatible with cpp Nix
searcher: Option,
}
#[derive(Clone)]
pub struct ReferencePattern {
inner: Arc>,
}
impl ReferencePattern
{
pub fn candidates(&self) -> &[P] {
&self.inner.candidates
}
pub fn longest_candidate(&self) -> usize {
self.inner.longest_candidate
}
}
impl> ReferencePattern {
/// Construct a new `ReferencePattern` that knows how to scan for the given
/// candidates.
pub fn new(candidates: Vec
) -> Self {
let searcher = if candidates.is_empty() {
None
} else {
Some(TwoByteWM::new(&candidates))
};
let longest_candidate = candidates.iter().fold(0, |v, c| v.max(c.as_ref().len()));
ReferencePattern {
inner: Arc::new(ReferencePatternInner {
searcher,
candidates,
longest_candidate,
}),
}
}
}
impl
From> for ReferencePattern
where
P: AsRef<[u8]>,
{
fn from(candidates: Vec
) -> Self {
Self::new(candidates)
}
}
/// Represents a "primed" reference scanner with an automaton that knows the set
/// of bytes patterns to scan for.
pub struct ReferenceScanner
{
pattern: ReferencePattern
,
matches: Vec,
}
impl> ReferenceScanner {
/// Construct a new `ReferenceScanner` that knows how to scan for the given
/// candidate bytes patterns.
pub fn new>>(pattern: IP) -> Self {
let pattern = pattern.into();
let matches = vec![false; pattern.candidates().len()];
ReferenceScanner { pattern, matches }
}
/// Scan the given buffer for all non-overlapping matches and collect them
/// in the scanner.
pub fn scan>(&mut self, haystack: S) {
if haystack.as_ref().len() < self.pattern.longest_candidate() {
return;
}
if let Some(searcher) = &self.pattern.inner.searcher {
for m in searcher.find(haystack) {
self.matches[m.pat_idx] = true;
}
}
}
pub fn pattern(&self) -> &ReferencePattern {
&self.pattern
}
pub fn matches(&self) -> &[bool] {
&self.matches
}
pub fn candidate_matches(&self) -> impl Iterator- {
let candidates = self.pattern.candidates();
self.matches.iter().enumerate().filter_map(|(idx, found)| {
if *found {
Some(&candidates[idx])
} else {
None
}
})
}
}
impl> ReferenceScanner
{
/// Finalise the reference scanner and return the resulting matches.
pub fn finalise(self) -> BTreeSet
{
self.candidate_matches().cloned().collect()
}
}
const DEFAULT_BUF_SIZE: usize = 8 * 1024;
#[pin_project]
pub struct ReferenceReader
{
scanner: ReferenceScanner
,
buffer: Vec,
consumed: usize,
#[pin]
reader: R,
}
impl ReferenceReader
where
P: AsRef<[u8]>,
{
pub fn new(pattern: ReferencePattern
, reader: R) -> ReferenceReader
{
Self::with_capacity(DEFAULT_BUF_SIZE, pattern, reader)
}
pub fn with_capacity(
capacity: usize,
pattern: ReferencePattern
,
reader: R,
) -> ReferenceReader
{
// If capacity is not at least as long as longest_candidate we can't do a scan
let capacity = capacity.max(pattern.longest_candidate());
ReferenceReader {
scanner: ReferenceScanner::new(pattern),
buffer: Vec::with_capacity(capacity),
consumed: 0,
reader,
}
}
pub fn scanner(&self) -> &ReferenceScanner
{
&self.scanner
}
}
impl
ReferenceReader
where
P: Clone + Ord + AsRef<[u8]>,
{
pub fn finalise(self) -> BTreeSet
{
self.scanner.finalise()
}
}
impl
AsyncRead for ReferenceReader
where
R: AsyncRead,
P: AsRef<[u8]>,
{
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> Poll> {
let internal_buf = ready!(self.as_mut().poll_fill_buf(cx))?;
let amt = buf.remaining().min(internal_buf.len());
buf.put_slice(&internal_buf[..amt]);
self.consume(amt);
Poll::Ready(Ok(()))
}
}
impl AsyncBufRead for ReferenceReader
where
R: AsyncRead,
P: AsRef<[u8]>,
{
fn poll_fill_buf(
self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> Poll> {
let overlap = self.scanner.pattern.longest_candidate() - 1;
let mut this = self.project();
// Still data in buffer
if *this.consumed < this.buffer.len() {
return Poll::Ready(Ok(&this.buffer[*this.consumed..]));
}
// We need to copy last `overlap` bytes to front to deal with references that overlap reads
if *this.consumed > overlap {
let start = this.buffer.len() - overlap;
this.buffer.copy_within(start.., 0);
this.buffer.truncate(overlap);
*this.consumed = overlap;
}
// Read at least until self.buffer.len() > overlap so we can do one scan
loop {
let filled = {
let mut buf = ReadBuf::uninit(this.buffer.spare_capacity_mut());
ready!(this.reader.as_mut().poll_read(cx, &mut buf))?;
buf.filled().len()
};
// SAFETY: We just read `filled` amount of data above
unsafe {
this.buffer.set_len(filled + this.buffer.len());
}
if filled == 0 || this.buffer.len() > overlap {
break;
}
}
this.scanner.scan(&this.buffer);
Poll::Ready(Ok(&this.buffer[*this.consumed..]))
}
fn consume(self: Pin<&mut Self>, amt: usize) {
debug_assert!(self.consumed + amt <= self.buffer.len());
let this = self.project();
*this.consumed += amt;
}
}
#[cfg(test)]
mod tests {
use rstest::rstest;
use tokio::io::AsyncReadExt as _;
use tokio_test::io::Builder;
use super::*;
// The actual derivation of `nixpkgs.hello`.
const HELLO_DRV: &str = r#"Derive([("out","/nix/store/33l4p0pn0mybmqzaxfkpppyh7vx1c74p-hello-2.12.1","","")],[("/nix/store/6z1jfnqqgyqr221zgbpm30v91yfj3r45-bash-5.1-p16.drv",["out"]),("/nix/store/ap9g09fxbicj836zm88d56dn3ff4clxl-stdenv-linux.drv",["out"]),("/nix/store/pf80kikyxr63wrw56k00i1kw6ba76qik-hello-2.12.1.tar.gz.drv",["out"])],["/nix/store/9krlzvny65gdc8s7kpb6lkx8cd02c25b-default-builder.sh"],"x86_64-linux","/nix/store/4xw8n979xpivdc46a9ndcvyhwgif00hz-bash-5.1-p16/bin/bash",["-e","/nix/store/9krlzvny65gdc8s7kpb6lkx8cd02c25b-default-builder.sh"],[("buildInputs",""),("builder","/nix/store/4xw8n979xpivdc46a9ndcvyhwgif00hz-bash-5.1-p16/bin/bash"),("cmakeFlags",""),("configureFlags",""),("depsBuildBuild",""),("depsBuildBuildPropagated",""),("depsBuildTarget",""),("depsBuildTargetPropagated",""),("depsHostHost",""),("depsHostHostPropagated",""),("depsTargetTarget",""),("depsTargetTargetPropagated",""),("doCheck","1"),("doInstallCheck",""),("mesonFlags",""),("name","hello-2.12.1"),("nativeBuildInputs",""),("out","/nix/store/33l4p0pn0mybmqzaxfkpppyh7vx1c74p-hello-2.12.1"),("outputs","out"),("patches",""),("pname","hello"),("propagatedBuildInputs",""),("propagatedNativeBuildInputs",""),("src","/nix/store/pa10z4ngm0g83kx9mssrqzz30s84vq7k-hello-2.12.1.tar.gz"),("stdenv","/nix/store/cp65c8nk29qq5cl1wyy5qyw103cwmax7-stdenv-linux"),("strictDeps",""),("system","x86_64-linux"),("version","2.12.1")])"#;
#[test]
fn test_no_patterns() {
let mut scanner: ReferenceScanner = ReferenceScanner::new(vec![]);
scanner.scan(HELLO_DRV);
let result = scanner.finalise();
assert_eq!(result.len(), 0);
}
#[test]
fn test_single_match() {
let mut scanner = ReferenceScanner::new(vec![
"/nix/store/4xw8n979xpivdc46a9ndcvyhwgif00hz-bash-5.1-p16".to_string(),
]);
scanner.scan(HELLO_DRV);
let result = scanner.finalise();
assert_eq!(result.len(), 1);
assert!(result.contains("/nix/store/4xw8n979xpivdc46a9ndcvyhwgif00hz-bash-5.1-p16"));
}
#[test]
fn test_multiple_matches() {
let candidates = vec![
// these exist in the drv:
"/nix/store/33l4p0pn0mybmqzaxfkpppyh7vx1c74p-hello-2.12.1".to_string(),
"/nix/store/pf80kikyxr63wrw56k00i1kw6ba76qik-hello-2.12.1.tar.gz.drv".to_string(),
"/nix/store/cp65c8nk29qq5cl1wyy5qyw103cwmax7-stdenv-linux".to_string(),
// this doesn't:
"/nix/store/fn7zvafq26f0c8b17brs7s95s10ibfzs-emacs-28.2.drv".to_string(),
];
let mut scanner = ReferenceScanner::new(candidates.clone());
scanner.scan(HELLO_DRV);
let result = scanner.finalise();
assert_eq!(result.len(), 3);
for c in candidates[..3].iter() {
assert!(result.contains(c));
}
}
#[rstest]
#[case::normal(8096, 8096)]
#[case::small_capacity(8096, 1)]
#[case::small_read(1, 8096)]
#[case::all_small(1, 1)]
#[tokio::test]
async fn test_reference_reader(#[case] chunk_size: usize, #[case] capacity: usize) {
let candidates = vec![
// these exist in the drv:
"33l4p0pn0mybmqzaxfkpppyh7vx1c74p",
"pf80kikyxr63wrw56k00i1kw6ba76qik",
"cp65c8nk29qq5cl1wyy5qyw103cwmax7",
// this doesn't:
"fn7zvafq26f0c8b17brs7s95s10ibfzs",
];
let pattern = ReferencePattern::new(candidates.clone());
let mut mock = Builder::new();
for c in HELLO_DRV.as_bytes().chunks(chunk_size) {
mock.read(c);
}
let mock = mock.build();
let mut reader = ReferenceReader::with_capacity(capacity, pattern, mock);
let mut s = String::new();
reader.read_to_string(&mut s).await.unwrap();
assert_eq!(s, HELLO_DRV);
let result = reader.finalise();
assert_eq!(result.len(), 3);
for c in candidates[..3].iter() {
assert!(result.contains(c));
}
}
// FUTUREWORK: Test with large file
}