//! This module implements the abstract/virtual machine that runs Tvix //! bytecode. //! //! The operation of the VM is facilitated by the [`Frame`] type, //! which controls the current execution state of the VM and is //! processed within the VM's operating loop. //! //! A [`VM`] is used by instantiating it with an initial [`Frame`], //! then triggering its execution and waiting for the VM to return or //! yield an error. pub mod generators; mod macros; use bstr::{BString, ByteSlice, ByteVec}; use codemap::Span; use serde_json::json; use std::{cmp::Ordering, collections::HashMap, ops::DerefMut, path::PathBuf, rc::Rc}; use crate::{ arithmetic_op, chunk::Chunk, cmp_op, compiler::GlobalsMap, errors::{CatchableErrorKind, Error, ErrorKind, EvalResult}, io::EvalIO, lifted_pop, nix_search_path::NixSearchPath, observer::RuntimeObserver, opcode::{CodeIdx, Count, JumpOffset, OpCode, StackIdx, UpvalueIdx}, spans::LightSpan, upvalues::Upvalues, value::{ Builtin, BuiltinResult, Closure, CoercionKind, Lambda, NixAttrs, NixContext, NixList, PointerEquality, Thunk, Value, }, vm::generators::GenCo, warnings::{EvalWarning, WarningKind}, NixString, SourceCode, }; use generators::{call_functor, Generator, GeneratorState}; use self::generators::{VMRequest, VMResponse}; /// Internal helper trait for taking a span from a variety of types, to make use /// of `WithSpan` (defined below) more ergonomic at call sites. trait GetSpan { fn get_span(self) -> Span; } impl<'o, IO> GetSpan for &VM<'o, IO> { fn get_span(self) -> Span { self.reasonable_span.span() } } impl GetSpan for &CallFrame { fn get_span(self) -> Span { self.current_span() } } impl GetSpan for &LightSpan { fn get_span(self) -> Span { self.span() } } impl GetSpan for Span { fn get_span(self) -> Span { self } } /// Internal helper trait for ergonomically converting from a `Result` to a `Result` using the current span of a call frame, /// and chaining the VM's frame stack around it for printing a cause chain. trait WithSpan { fn with_span(self, top_span: S, vm: &VM) -> Result; } impl WithSpan for Result { fn with_span(self, top_span: S, vm: &VM) -> Result { match self { Ok(something) => Ok(something), Err(kind) => { let mut error = Error::new(kind, top_span.get_span(), vm.source.clone()); // Wrap the top-level error in chaining errors for each element // of the frame stack. for frame in vm.frames.iter().rev() { match frame { Frame::CallFrame { span, .. } => { error = Error::new( ErrorKind::BytecodeError(Box::new(error)), span.span(), vm.source.clone(), ); } Frame::Generator { name, span, .. } => { error = Error::new( ErrorKind::NativeError { err: Box::new(error), gen_type: name, }, span.span(), vm.source.clone(), ); } } } Err(error) } } } } struct CallFrame { /// The lambda currently being executed. lambda: Rc, /// Optional captured upvalues of this frame (if a thunk or /// closure if being evaluated). upvalues: Rc, /// Instruction pointer to the instruction currently being /// executed. ip: CodeIdx, /// Stack offset, i.e. the frames "view" into the VM's full stack. stack_offset: usize, } impl CallFrame { /// Retrieve an upvalue from this frame at the given index. fn upvalue(&self, idx: UpvalueIdx) -> &Value { &self.upvalues[idx] } /// Borrow the chunk of this frame's lambda. fn chunk(&self) -> &Chunk { &self.lambda.chunk } /// Increment this frame's instruction pointer and return the operation that /// the pointer moved past. fn inc_ip(&mut self) -> OpCode { let op = self.chunk()[self.ip]; self.ip += 1; op } /// Construct an error result from the given ErrorKind and the source span /// of the current instruction. pub fn error(&self, vm: &VM, kind: ErrorKind) -> Result { Err(kind).with_span(self, vm) } /// Returns the current span. This is potentially expensive and should only /// be used when actually constructing an error or warning. pub fn current_span(&self) -> Span { self.chunk().get_span(self.ip - 1) } /// Returns the information needed to calculate the current span, /// but without performing that calculation. // TODO: why pub? pub(crate) fn current_light_span(&self) -> LightSpan { LightSpan::new_actual(self.current_span()) } } /// A frame represents an execution state of the VM. The VM has a stack of /// frames representing the nesting of execution inside of the VM, and operates /// on the frame at the top. /// /// When a frame has been fully executed, it is removed from the VM's frame /// stack and expected to leave a result [`Value`] on the top of the stack. enum Frame { /// CallFrame represents the execution of Tvix bytecode within a thunk, /// function or closure. CallFrame { /// The call frame itself, separated out into another type to pass it /// around easily. call_frame: CallFrame, /// Span from which the call frame was launched. span: LightSpan, }, /// Generator represents a frame that can yield further /// instructions to the VM while its execution is being driven. /// /// A generator is essentially an asynchronous function that can /// be suspended while waiting for the VM to do something (e.g. /// thunk forcing), and resume at the same point. Generator { /// human-readable description of the generator, name: &'static str, /// Span from which the generator was launched. span: LightSpan, state: GeneratorState, /// Generator itself, which can be resumed with `.resume()`. generator: Generator, }, } impl Frame { pub fn span(&self) -> LightSpan { match self { Frame::CallFrame { span, .. } | Frame::Generator { span, .. } => span.clone(), } } } #[derive(Default)] struct ImportCache(HashMap); /// The `ImportCache` holds the `Value` resulting from `import`ing a certain /// file, so that the same file doesn't need to be re-evaluated multiple times. /// Currently the real path of the imported file (determined using /// [`std::fs::canonicalize()`], not to be confused with our /// [`crate::value::canon_path()`]) is used to identify the file, /// just like C++ Nix does. /// /// Errors while determining the real path are currently just ignored, since we /// pass around some fake paths like `/__corepkgs__/fetchurl.nix`. /// /// In the future, we could use something more sophisticated, like file hashes. /// However, a consideration is that the eval cache is observable via impurities /// like pointer equality and `builtins.trace`. impl ImportCache { fn get(&self, path: PathBuf) -> Option<&Value> { let path = match std::fs::canonicalize(path.as_path()).map_err(ErrorKind::from) { Ok(path) => path, Err(_) => path, }; self.0.get(&path) } fn insert(&mut self, path: PathBuf, value: Value) -> Option { self.0.insert( match std::fs::canonicalize(path.as_path()).map_err(ErrorKind::from) { Ok(path) => path, Err(_) => path, }, value, ) } } struct VM<'o, IO> { /// VM's frame stack, representing the execution contexts the VM is working /// through. Elements are usually pushed when functions are called, or /// thunks are being forced. frames: Vec, /// The VM's top-level value stack. Within this stack, each code-executing /// frame holds a "view" of the stack representing the slice of the /// top-level stack that is relevant to its operation. This is done to avoid /// allocating a new `Vec` for each frame's stack. pub(crate) stack: Vec, /// Stack indices (absolute indexes into `stack`) of attribute /// sets from which variables should be dynamically resolved /// (`with`). with_stack: Vec, /// Runtime warnings collected during evaluation. warnings: Vec, /// Import cache, mapping absolute file paths to the value that /// they compile to. Note that this reuses thunks, too! // TODO: should probably be based on a file hash pub import_cache: ImportCache, /// Data structure holding all source code evaluated in this VM, /// used for pretty error reporting. source: SourceCode, /// Parsed Nix search path, which is used to resolve `<...>` /// references. nix_search_path: NixSearchPath, /// Implementation of I/O operations used for impure builtins and /// features like `import`. io_handle: IO, /// Runtime observer which can print traces of runtime operations. observer: &'o mut dyn RuntimeObserver, /// Strong reference to the globals, guaranteeing that they are /// kept alive for the duration of evaluation. /// /// This is important because recursive builtins (specifically /// `import`) hold a weak reference to the builtins, while the /// original strong reference is held by the compiler which does /// not exist anymore at runtime. #[allow(dead_code)] globals: Rc, /// A reasonably applicable span that can be used for errors in each /// execution situation. /// /// The VM should update this whenever control flow changes take place (i.e. /// entering or exiting a frame to yield control somewhere). reasonable_span: LightSpan, /// This field is responsible for handling `builtins.tryEval`. When that /// builtin is encountered, it sends a special message to the VM which /// pushes the frame index that requested to be informed of catchable /// errors in this field. /// /// The frame stack is then laid out like this: /// /// ```notrust /// ┌──┬──────────────────────────┐ /// │ 0│ `Result`-producing frame │ /// ├──┼──────────────────────────┤ /// │-1│ `builtins.tryEval` frame │ /// ├──┼──────────────────────────┤ /// │..│ ... other frames ... │ /// └──┴──────────────────────────┘ /// ``` /// /// Control is yielded to the outer VM loop, which evaluates the next frame /// and returns the result itself to the `builtins.tryEval` frame. try_eval_frames: Vec, } impl<'o, IO> VM<'o, IO> where IO: AsRef + 'static, { pub fn new( nix_search_path: NixSearchPath, io_handle: IO, observer: &'o mut dyn RuntimeObserver, source: SourceCode, globals: Rc, reasonable_span: LightSpan, ) -> Self { Self { nix_search_path, io_handle, observer, globals, reasonable_span, source, frames: vec![], stack: vec![], with_stack: vec![], warnings: vec![], import_cache: Default::default(), try_eval_frames: vec![], } } /// Push a call frame onto the frame stack. fn push_call_frame(&mut self, span: LightSpan, call_frame: CallFrame) { self.frames.push(Frame::CallFrame { span, call_frame }) } /// Run the VM's primary (outer) execution loop, continuing execution based /// on the current frame at the top of the frame stack. fn execute(mut self) -> EvalResult { while let Some(frame) = self.frames.pop() { self.reasonable_span = frame.span(); let frame_id = self.frames.len(); match frame { Frame::CallFrame { call_frame, span } => { self.observer .observe_enter_call_frame(0, &call_frame.lambda, frame_id); match self.execute_bytecode(span, call_frame) { Ok(true) => self.observer.observe_exit_call_frame(frame_id, &self.stack), Ok(false) => self .observer .observe_suspend_call_frame(frame_id, &self.stack), Err(err) => return Err(err), }; } // Handle generator frames, which can request thunk forcing // during their execution. Frame::Generator { name, span, state, generator, } => { self.observer .observe_enter_generator(frame_id, name, &self.stack); match self.run_generator(name, span, frame_id, state, generator, None) { Ok(true) => { self.observer .observe_exit_generator(frame_id, name, &self.stack) } Ok(false) => { self.observer .observe_suspend_generator(frame_id, name, &self.stack) } Err(err) => return Err(err), }; } } } // Once no more frames are present, return the stack's top value as the // result. let value = self .stack .pop() .expect("tvix bug: runtime stack empty after execution"); Ok(RuntimeResult { value, warnings: self.warnings, }) } /// Run the VM's inner execution loop, processing Tvix bytecode from a /// chunk. This function returns if: /// /// 1. The code has run to the end, and has left a value on the top of the /// stack. In this case, the frame is not returned to the frame stack. /// /// 2. The code encounters a generator, in which case the frame in its /// current state is pushed back on the stack, and the generator is left on /// top of it for the outer loop to execute. /// /// 3. An error is encountered. /// /// This function *must* ensure that it leaves the frame stack in the /// correct order, especially when re-enqueuing a frame to execute. /// /// The return value indicates whether the bytecode has been executed to /// completion, or whether it has been suspended in favour of a generator. fn execute_bytecode(&mut self, span: LightSpan, mut frame: CallFrame) -> EvalResult { loop { let op = frame.inc_ip(); self.observer.observe_execute_op(frame.ip, &op, &self.stack); match op { OpCode::OpThunkSuspended(idx) | OpCode::OpThunkClosure(idx) => { let blueprint = match &frame.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; let thunk = if matches!(op, OpCode::OpThunkClosure(_)) { debug_assert!( upvalue_count > 0, "OpThunkClosure should not be called for plain lambdas" ); Thunk::new_closure(blueprint) } else { Thunk::new_suspended(blueprint, frame.current_light_span()) }; let upvalues = thunk.upvalues_mut(); self.stack.push(Value::Thunk(thunk.clone())); // From this point on we internally mutate the // upvalues. The closure (if `is_closure`) is // already in its stack slot, which means that it // can capture itself as an upvalue for // self-recursion. self.populate_upvalues(&mut frame, upvalue_count, upvalues)?; } OpCode::OpForce => { if let Some(Value::Thunk(_)) = self.stack.last() { let thunk = match self.stack_pop() { Value::Thunk(t) => t, _ => unreachable!(), }; let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); self.enqueue_generator("force", gen_span.clone(), |co| { Thunk::force(thunk, co, gen_span) }); return Ok(false); } } OpCode::OpGetUpvalue(upv_idx) => { let value = frame.upvalue(upv_idx).clone(); self.stack.push(value); } // Discard the current frame. OpCode::OpReturn => { // TODO(amjoseph): I think this should assert `==` rather // than `<=` but it fails with the stricter condition. debug_assert!(self.stack.len() - 1 <= frame.stack_offset); return Ok(true); } OpCode::OpConstant(idx) => { let c = frame.chunk()[idx].clone(); self.stack.push(c); } OpCode::OpCall => { let callable = self.stack_pop(); self.call_value(frame.current_light_span(), Some((span, frame)), callable)?; // exit this loop and let the outer loop enter the new call return Ok(true); } // Remove the given number of elements from the stack, // but retain the top value. OpCode::OpCloseScope(Count(count)) => { // Immediately move the top value into the right // position. let target_idx = self.stack.len() - 1 - count; self.stack[target_idx] = self.stack_pop(); // Then drop the remaining values. for _ in 0..(count - 1) { self.stack.pop(); } } OpCode::OpClosure(idx) => { let blueprint = match &frame.chunk()[idx] { Value::Blueprint(lambda) => lambda.clone(), _ => panic!("compiler bug: non-blueprint in blueprint slot"), }; let upvalue_count = blueprint.upvalue_count; debug_assert!( upvalue_count > 0, "OpClosure should not be called for plain lambdas" ); let mut upvalues = Upvalues::with_capacity(blueprint.upvalue_count); self.populate_upvalues(&mut frame, upvalue_count, &mut upvalues)?; self.stack .push(Value::Closure(Rc::new(Closure::new_with_upvalues( Rc::new(upvalues), blueprint, )))); } OpCode::OpAttrsSelect => lifted_pop! { self(key, attrs) => { let key = key.to_str().with_span(&frame, self)?; let attrs = attrs.to_attrs().with_span(&frame, self)?; match attrs.select(&key) { Some(value) => self.stack.push(value.clone()), None => { return frame.error( self, ErrorKind::AttributeNotFound { name: key.to_str_lossy().into_owned() }, ); } } } }, OpCode::OpJumpIfFalse(JumpOffset(offset)) => { debug_assert!(offset != 0); if !self.stack_peek(0).as_bool().with_span(&frame, self)? { frame.ip += offset; } } OpCode::OpJumpIfCatchable(JumpOffset(offset)) => { debug_assert!(offset != 0); if self.stack_peek(0).is_catchable() { frame.ip += offset; } } OpCode::OpJumpIfNoFinaliseRequest(JumpOffset(offset)) => { debug_assert!(offset != 0); match self.stack_peek(0) { Value::FinaliseRequest(finalise) => { if !finalise { frame.ip += offset; } }, val => panic!("Tvix bug: OpJumIfNoFinaliseRequest: expected FinaliseRequest, but got {}", val.type_of()), } } OpCode::OpPop => { self.stack.pop(); } OpCode::OpAttrsTrySelect => { let key = self.stack_pop().to_str().with_span(&frame, self)?; let value = match self.stack_pop() { Value::Attrs(attrs) => match attrs.select(&key) { Some(value) => value.clone(), None => Value::AttrNotFound, }, _ => Value::AttrNotFound, }; self.stack.push(value); } OpCode::OpGetLocal(StackIdx(local_idx)) => { let idx = frame.stack_offset + local_idx; self.stack.push(self.stack[idx].clone()); } OpCode::OpJumpIfNotFound(JumpOffset(offset)) => { debug_assert!(offset != 0); if matches!(self.stack_peek(0), Value::AttrNotFound) { self.stack_pop(); frame.ip += offset; } } OpCode::OpJump(JumpOffset(offset)) => { debug_assert!(offset != 0); frame.ip += offset; } OpCode::OpEqual => lifted_pop! { self(b, a) => { let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); self.enqueue_generator("nix_eq", gen_span.clone(), |co| { a.nix_eq_owned_genco(b, co, PointerEquality::ForbidAll, gen_span) }); return Ok(false); } }, // These assertion operations error out if the stack // top is not of the expected type. This is necessary // to implement some specific behaviours of Nix // exactly. OpCode::OpAssertBool => { let val = self.stack_peek(0); // TODO(edef): propagate this into is_bool, since bottom values *are* values of any type if !val.is_catchable() && !val.is_bool() { return frame.error( self, ErrorKind::TypeError { expected: "bool", actual: val.type_of(), }, ); } } OpCode::OpAssertAttrs => { let val = self.stack_peek(0); // TODO(edef): propagate this into is_attrs, since bottom values *are* values of any type if !val.is_catchable() && !val.is_attrs() { return frame.error( self, ErrorKind::TypeError { expected: "set", actual: val.type_of(), }, ); } } OpCode::OpAttrs(Count(count)) => self.run_attrset(&frame, count)?, OpCode::OpAttrsUpdate => lifted_pop! { self(rhs, lhs) => { let rhs = rhs.to_attrs().with_span(&frame, self)?; let lhs = lhs.to_attrs().with_span(&frame, self)?; self.stack.push(Value::attrs(lhs.update(*rhs))) } }, OpCode::OpInvert => lifted_pop! { self(v) => { let v = v.as_bool().with_span(&frame, self)?; self.stack.push(Value::Bool(!v)); } }, OpCode::OpList(Count(count)) => { let list = NixList::construct(count, self.stack.split_off(self.stack.len() - count)); self.stack.push(Value::List(list)); } OpCode::OpJumpIfTrue(JumpOffset(offset)) => { debug_assert!(offset != 0); if self.stack_peek(0).as_bool().with_span(&frame, self)? { frame.ip += offset; } } OpCode::OpHasAttr => lifted_pop! { self(key, attrs) => { let key = key.to_str().with_span(&frame, self)?; let result = match attrs { Value::Attrs(attrs) => attrs.contains(&key), // Nix allows use of `?` on non-set types, but // always returns false in those cases. _ => false, }; self.stack.push(Value::Bool(result)); } }, OpCode::OpConcat => lifted_pop! { self(rhs, lhs) => { let rhs = rhs.to_list().with_span(&frame, self)?.into_inner(); let lhs = lhs.to_list().with_span(&frame, self)?.into_inner(); self.stack.push(Value::List(NixList::from(lhs + rhs))) } }, OpCode::OpResolveWith => { let ident = self.stack_pop().to_str().with_span(&frame, self)?; // Re-enqueue this frame. let op_span = frame.current_light_span(); self.push_call_frame(span, frame); // Construct a generator frame doing the lookup in constant // stack space. let with_stack_len = self.with_stack.len(); let closed_with_stack_len = self .last_call_frame() .map(|frame| frame.upvalues.with_stack_len()) .unwrap_or(0); self.enqueue_generator("resolve_with", op_span, |co| { resolve_with( co, ident.as_bstr().to_owned(), with_stack_len, closed_with_stack_len, ) }); return Ok(false); } OpCode::OpFinalise(StackIdx(idx)) => match &self.stack[frame.stack_offset + idx] { Value::Closure(_) => panic!("attempted to finalise a closure"), Value::Thunk(thunk) => thunk.finalise(&self.stack[frame.stack_offset..]), _ => panic!("attempted to finalise a non-thunk"), }, OpCode::OpCoerceToString(kind) => { let value = self.stack_pop(); let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); self.enqueue_generator("coerce_to_string", gen_span.clone(), |co| { value.coerce_to_string(co, kind, gen_span) }); return Ok(false); } OpCode::OpInterpolate(Count(count)) => self.run_interpolate(&frame, count)?, OpCode::OpValidateClosedFormals => { let formals = frame.lambda.formals.as_ref().expect( "OpValidateClosedFormals called within the frame of a lambda without formals", ); let peeked = self.stack_peek(0); if peeked.is_catchable() { continue; } let args = peeked.to_attrs().with_span(&frame, self)?; for arg in args.keys() { if !formals.contains(arg) { return frame.error( self, ErrorKind::UnexpectedArgumentFormals { arg: arg.clone(), formals_span: formals.span, }, ); } } } OpCode::OpAdd => lifted_pop! { self(b, a) => { let gen_span = frame.current_light_span(); self.push_call_frame(span, frame); // OpAdd can add not just numbers, but also string-like // things, which requires more VM logic. This operation is // evaluated in a generator frame. self.enqueue_generator("add_values", gen_span, |co| add_values(co, a, b)); return Ok(false); } }, OpCode::OpSub => lifted_pop! { self(b, a) => { let result = arithmetic_op!(&a, &b, -).with_span(&frame, self)?; self.stack.push(result); } }, OpCode::OpMul => lifted_pop! { self(b, a) => { let result = arithmetic_op!(&a, &b, *).with_span(&frame, self)?; self.stack.push(result); } }, OpCode::OpDiv => lifted_pop! { self(b, a) => { match b { Value::Integer(0) => return frame.error(self, ErrorKind::DivisionByZero), Value::Float(b) if b == 0.0_f64 => { return frame.error(self, ErrorKind::DivisionByZero) } _ => {} }; let result = arithmetic_op!(&a, &b, /).with_span(&frame, self)?; self.stack.push(result); } }, OpCode::OpNegate => match self.stack_pop() { Value::Integer(i) => self.stack.push(Value::Integer(-i)), Value::Float(f) => self.stack.push(Value::Float(-f)), Value::Catchable(cex) => self.stack.push(Value::Catchable(cex)), v => { return frame.error( self, ErrorKind::TypeError { expected: "number (either int or float)", actual: v.type_of(), }, ); } }, OpCode::OpLess => cmp_op!(self, frame, span, <), OpCode::OpLessOrEq => cmp_op!(self, frame, span, <=), OpCode::OpMore => cmp_op!(self, frame, span, >), OpCode::OpMoreOrEq => cmp_op!(self, frame, span, >=), OpCode::OpFindFile => match self.stack_pop() { Value::UnresolvedPath(path) => { let resolved = self .nix_search_path .resolve(&self.io_handle, *path) .with_span(&frame, self)?; self.stack.push(resolved.into()); } _ => panic!("tvix compiler bug: OpFindFile called on non-UnresolvedPath"), }, OpCode::OpResolveHomePath => match self.stack_pop() { Value::UnresolvedPath(path) => { match dirs::home_dir() { None => { return frame.error( self, ErrorKind::RelativePathResolution( "failed to determine home directory".into(), ), ); } Some(mut buf) => { buf.push(*path); self.stack.push(buf.into()); } }; } _ => { panic!("tvix compiler bug: OpResolveHomePath called on non-UnresolvedPath") } }, OpCode::OpPushWith(StackIdx(idx)) => self.with_stack.push(frame.stack_offset + idx), OpCode::OpPopWith => { self.with_stack.pop(); } OpCode::OpAssertFail => { self.stack .push(Value::from(CatchableErrorKind::AssertionFailed)); } // Data-carrying operands should never be executed, // that is a critical error in the VM/compiler. OpCode::DataStackIdx(_) | OpCode::DataDeferredLocal(_) | OpCode::DataUpvalueIdx(_) | OpCode::DataCaptureWith => { panic!("Tvix bug: attempted to execute data-carrying operand") } } } } } /// Implementation of helper functions for the runtime logic above. impl<'o, IO> VM<'o, IO> where IO: AsRef + 'static, { pub(crate) fn stack_pop(&mut self) -> Value { self.stack.pop().expect("runtime stack empty") } fn stack_peek(&self, offset: usize) -> &Value { &self.stack[self.stack.len() - 1 - offset] } fn run_attrset(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> { let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2)) .with_span(frame, self)? .map(Value::attrs) .into(); self.stack.push(attrs); Ok(()) } /// Access the last call frame present in the frame stack. fn last_call_frame(&self) -> Option<&CallFrame> { for frame in self.frames.iter().rev() { if let Frame::CallFrame { call_frame, .. } = frame { return Some(call_frame); } } None } /// Push an already constructed warning. pub fn push_warning(&mut self, warning: EvalWarning) { self.warnings.push(warning); } /// Emit a warning with the given WarningKind and the source span /// of the current instruction. pub fn emit_warning(&mut self, kind: WarningKind) { self.push_warning(EvalWarning { kind, span: self.get_span(), }); } /// Interpolate string fragments by popping the specified number of /// fragments of the stack, evaluating them to strings, and pushing /// the concatenated result string back on the stack. fn run_interpolate(&mut self, frame: &CallFrame, count: usize) -> EvalResult<()> { let mut out = BString::default(); // Interpolation propagates the context and union them. let mut context: NixContext = NixContext::new(); for i in 0..count { let val = self.stack_pop(); if val.is_catchable() { for _ in (i + 1)..count { self.stack.pop(); } self.stack.push(val); return Ok(()); } let mut nix_string = val.to_contextful_str().with_span(frame, self)?; out.push_str(nix_string.as_bstr()); if let Some(nix_string_ctx) = nix_string.take_context() { context.extend(nix_string_ctx.into_iter()) } } self.stack .push(Value::String(NixString::new_context_from(context, out))); Ok(()) } /// Returns a reasonable light span for the current situation that the VM is /// in. pub fn reasonable_light_span(&self) -> LightSpan { self.reasonable_span.clone() } /// Apply an argument from the stack to a builtin, and attempt to call it. /// /// All calls are tail-calls in Tvix, as every function application is a /// separate thunk and OpCall is thus the last result in the thunk. /// /// Due to this, once control flow exits this function, the generator will /// automatically be run by the VM. fn call_builtin(&mut self, span: LightSpan, mut builtin: Builtin) -> EvalResult<()> { let builtin_name = builtin.name(); self.observer.observe_enter_builtin(builtin_name); builtin.apply_arg(self.stack_pop()); match builtin.call() { // Partially applied builtin is just pushed back on the stack. BuiltinResult::Partial(partial) => self.stack.push(Value::Builtin(partial)), // Builtin is fully applied and the generator needs to be run by the VM. BuiltinResult::Called(name, generator) => self.frames.push(Frame::Generator { generator, span, name, state: GeneratorState::Running, }), } Ok(()) } fn call_value( &mut self, span: LightSpan, parent: Option<(LightSpan, CallFrame)>, callable: Value, ) -> EvalResult<()> { match callable { Value::Builtin(builtin) => self.call_builtin(span, builtin), Value::Thunk(thunk) => self.call_value(span, parent, thunk.value().clone()), Value::Closure(closure) => { let lambda = closure.lambda(); self.observer.observe_tail_call(self.frames.len(), &lambda); // The stack offset is always `stack.len() - arg_count`, and // since this branch handles native Nix functions (which always // take only a single argument and are curried), the offset is // `stack_len - 1`. let stack_offset = self.stack.len() - 1; // Reenqueue the parent frame, which should only have // `OpReturn` left. Not throwing it away leads to more // useful error traces. if let Some((parent_span, parent_frame)) = parent { self.push_call_frame(parent_span, parent_frame); } self.push_call_frame( span, CallFrame { lambda, upvalues: closure.upvalues(), ip: CodeIdx(0), stack_offset, }, ); Ok(()) } // Attribute sets with a __functor attribute are callable. val @ Value::Attrs(_) => { if let Some((parent_span, parent_frame)) = parent { self.push_call_frame(parent_span, parent_frame); } self.enqueue_generator("__functor call", span, |co| call_functor(co, val)); Ok(()) } val @ Value::Catchable(_) => { // the argument that we tried to apply a catchable to self.stack.pop(); // applying a `throw` to anything is still a `throw`, so we just // push it back on the stack. self.stack.push(val); Ok(()) } v => Err(ErrorKind::NotCallable(v.type_of())).with_span(&span, self), } } /// Populate the upvalue fields of a thunk or closure under construction. fn populate_upvalues( &mut self, frame: &mut CallFrame, count: usize, mut upvalues: impl DerefMut, ) -> EvalResult<()> { for _ in 0..count { match frame.inc_ip() { OpCode::DataStackIdx(StackIdx(stack_idx)) => { let idx = frame.stack_offset + stack_idx; let val = match self.stack.get(idx) { Some(val) => val.clone(), None => { return frame.error( self, ErrorKind::TvixBug { msg: "upvalue to be captured was missing on stack", metadata: Some(Rc::new(json!({ "ip": format!("{:#x}", frame.ip.0 - 1), "stack_idx(relative)": stack_idx, "stack_idx(absolute)": idx, }))), }, ); } }; upvalues.deref_mut().push(val); } OpCode::DataUpvalueIdx(upv_idx) => { upvalues.deref_mut().push(frame.upvalue(upv_idx).clone()); } OpCode::DataDeferredLocal(idx) => { upvalues.deref_mut().push(Value::DeferredUpvalue(idx)); } OpCode::DataCaptureWith => { // Start the captured with_stack off of the // current call frame's captured with_stack, ... let mut captured_with_stack = frame .upvalues .with_stack() .cloned() // ... or make an empty one if there isn't one already. .unwrap_or_else(|| Vec::with_capacity(self.with_stack.len())); for idx in &self.with_stack { captured_with_stack.push(self.stack[*idx].clone()); } upvalues.deref_mut().set_with_stack(captured_with_stack); } _ => panic!("compiler error: missing closure operand"), } } Ok(()) } } // TODO(amjoseph): de-asyncify this /// Resolve a dynamically bound identifier (through `with`) by looking /// for matching values in the with-stacks carried at runtime. async fn resolve_with( co: GenCo, ident: BString, vm_with_len: usize, upvalue_with_len: usize, ) -> Result { /// Fetch and force a value on the with-stack from the VM. async fn fetch_forced_with(co: &GenCo, idx: usize) -> Value { match co.yield_(VMRequest::WithValue(idx)).await { VMResponse::Value(value) => value, msg => panic!( "Tvix bug: VM responded with incorrect generator message: {}", msg ), } } /// Fetch and force a value on the *captured* with-stack from the VM. async fn fetch_captured_with(co: &GenCo, idx: usize) -> Value { match co.yield_(VMRequest::CapturedWithValue(idx)).await { VMResponse::Value(value) => value, msg => panic!( "Tvix bug: VM responded with incorrect generator message: {}", msg ), } } for with_stack_idx in (0..vm_with_len).rev() { // TODO(tazjin): is this branch still live with the current with-thunking? let with = fetch_forced_with(&co, with_stack_idx).await; if with.is_catchable() { return Ok(with); } match with.to_attrs()?.select(&ident) { None => continue, Some(val) => return Ok(val.clone()), } } for upvalue_with_idx in (0..upvalue_with_len).rev() { let with = fetch_captured_with(&co, upvalue_with_idx).await; if with.is_catchable() { return Ok(with); } match with.to_attrs()?.select(&ident) { None => continue, Some(val) => return Ok(val.clone()), } } Err(ErrorKind::UnknownDynamicVariable(ident.to_string())) } // TODO(amjoseph): de-asyncify this async fn add_values(co: GenCo, a: Value, b: Value) -> Result { // What we try to do is solely determined by the type of the first value! let result = match (a, b) { (Value::Path(p), v) => { let mut path = p.into_os_string(); match generators::request_string_coerce( &co, v, CoercionKind { strong: false, // Concatenating a Path with something else results in a // Path, so we don't need to import any paths (paths // imported by Nix always exist as a string, unless // converted by the user). In C++ Nix they even may not // contain any string context, the resulting error of such a // case can not be replicated by us. import_paths: false, // FIXME(raitobezarius): per https://b.tvl.fyi/issues/364, this is a usecase // for having a `reject_context: true` option here. This didn't occur yet in // nixpkgs during my evaluations, therefore, I skipped it. }, ) .await { Ok(vs) => { path.push(vs.to_os_str()?); crate::value::canon_path(PathBuf::from(path)).into() } Err(c) => Value::Catchable(Box::new(c)), } } (Value::String(s1), Value::String(s2)) => Value::String(s1.concat(&s2)), (Value::String(s1), v) => generators::request_string_coerce( &co, v, CoercionKind { strong: false, // Behaves the same as string interpolation import_paths: true, }, ) .await .map(|s2| Value::String(s1.concat(&s2))) .into(), (a @ Value::Integer(_), b) | (a @ Value::Float(_), b) => arithmetic_op!(&a, &b, +)?, (a, b) => { let r1 = generators::request_string_coerce( &co, a, CoercionKind { strong: false, import_paths: false, }, ) .await; let r2 = generators::request_string_coerce( &co, b, CoercionKind { strong: false, import_paths: false, }, ) .await; match (r1, r2) { (Ok(s1), Ok(s2)) => Value::String(s1.concat(&s2)), (Err(c), _) => return Ok(Value::from(c)), (_, Err(c)) => return Ok(Value::from(c)), } } }; Ok(result) } /// The result of a VM's runtime evaluation. pub struct RuntimeResult { pub value: Value, pub warnings: Vec, } // TODO(amjoseph): de-asyncify this /// Generator that retrieves the final value from the stack, and deep-forces it /// before returning. async fn final_deep_force(co: GenCo) -> Result { let value = generators::request_stack_pop(&co).await; Ok(generators::request_deep_force(&co, value).await) } pub fn run_lambda( nix_search_path: NixSearchPath, io_handle: IO, observer: &mut dyn RuntimeObserver, source: SourceCode, globals: Rc, lambda: Rc, strict: bool, ) -> EvalResult where IO: AsRef + 'static, { // Retain the top-level span of the expression in this lambda, as // synthetic "calls" in deep_force will otherwise not have a span // to fall back to. // // We exploit the fact that the compiler emits a final instruction // with the span of the entire file for top-level expressions. let root_span = lambda.chunk.get_span(CodeIdx(lambda.chunk.code.len() - 1)); let mut vm = VM::new( nix_search_path, io_handle, observer, source, globals, root_span.into(), ); // When evaluating strictly, synthesise a frame that will instruct // the VM to deep-force the final value before returning it. if strict { vm.enqueue_generator("final_deep_force", root_span.into(), final_deep_force); } vm.frames.push(Frame::CallFrame { span: root_span.into(), call_frame: CallFrame { lambda, upvalues: Rc::new(Upvalues::with_capacity(0)), ip: CodeIdx(0), stack_offset: 0, }, }); vm.execute() }