//! This module implements the virtual (or abstract) machine that runs //! Tvix bytecode. use std::rc::Rc; use crate::{ chunk::Chunk, errors::{Error, EvalResult}, opcode::OpCode, value::{NixAttrs, NixList, Value}, }; #[cfg(feature = "disassembler")] use crate::disassembler::Tracer; pub struct VM { ip: usize, chunk: Chunk, stack: Vec, // Stack indices of attribute sets from which variables should be // dynamically resolved (`with`). with_stack: Vec, } macro_rules! arithmetic_op { ( $self:ident, $op:tt ) => {{ let b = $self.pop(); let a = $self.pop(); let result = arithmetic_op!(a, b, $op); $self.push(result); }}; ( $a:ident, $b:ident, $op:tt ) => {{ match ($a, $b) { (Value::Integer(i1), Value::Integer(i2)) => Value::Integer(i1 $op i2), (Value::Float(f1), Value::Float(f2)) => Value::Float(f1 $op f2), (Value::Integer(i1), Value::Float(f2)) => Value::Float(i1 as f64 $op f2), (Value::Float(f1), Value::Integer(i2)) => Value::Float(f1 $op i2 as f64), (v1, v2) => return Err(Error::TypeError { expected: "number (either int or float)", actual: if v1.is_number() { v2.type_of() } else { v1.type_of() }, }), } }}; } macro_rules! cmp_op { ( $self:ident, $op:tt ) => {{ let b = $self.pop(); let a = $self.pop(); // Comparable (in terms of ordering) values are numbers and // strings. Numbers need to be coerced similarly to arithmetic // ops if mixed types are encountered. let result = match (a, b) { (Value::Integer(i1), Value::Integer(i2)) => i1 $op i2, (Value::Float(f1), Value::Float(f2)) => f1 $op f2, (Value::Integer(i1), Value::Float(f2)) => (i1 as f64) $op f2, (Value::Float(f1), Value::Integer(i2)) => f1 $op (i2 as f64), (Value::String(s1), Value::String(s2)) => s1 $op s2, (lhs, rhs) => return Err(Error::Incomparable { lhs: lhs.type_of(), rhs: rhs.type_of(), }), }; $self.push(Value::Bool(result)); }}; } impl VM { fn inc_ip(&mut self) -> OpCode { let op = self.chunk.code[self.ip]; self.ip += 1; op } fn pop(&mut self) -> Value { self.stack.pop().expect("runtime stack empty") } fn push(&mut self, value: Value) { self.stack.push(value) } fn peek(&self, offset: usize) -> &Value { &self.stack[self.stack.len() - 1 - offset] } fn run(&mut self) -> EvalResult { #[cfg(feature = "disassembler")] let mut tracer = Tracer::new(); 'dispatch: loop { let op = self.inc_ip(); match op { OpCode::OpConstant(idx) => { let c = self.chunk.constant(idx).clone(); self.push(c); } OpCode::OpPop => { self.pop(); } OpCode::OpAdd => { let b = self.pop(); let a = self.pop(); let result = if let (Value::String(s1), Value::String(s2)) = (&a, &b) { Value::String(s1.concat(s2)) } else { arithmetic_op!(a, b, +) }; self.push(result) } OpCode::OpSub => arithmetic_op!(self, -), OpCode::OpMul => arithmetic_op!(self, *), OpCode::OpDiv => arithmetic_op!(self, /), OpCode::OpInvert => { let v = self.pop().as_bool()?; self.push(Value::Bool(!v)); } OpCode::OpNegate => match self.pop() { Value::Integer(i) => self.push(Value::Integer(-i)), Value::Float(f) => self.push(Value::Float(-f)), v => { return Err(Error::TypeError { expected: "number (either int or float)", actual: v.type_of(), }) } }, OpCode::OpEqual => { let v2 = self.pop(); let v1 = self.pop(); self.push(Value::Bool(v1 == v2)) } OpCode::OpLess => cmp_op!(self, <), OpCode::OpLessOrEq => cmp_op!(self, <=), OpCode::OpMore => cmp_op!(self, >), OpCode::OpMoreOrEq => cmp_op!(self, >=), OpCode::OpNull => self.push(Value::Null), OpCode::OpTrue => self.push(Value::Bool(true)), OpCode::OpFalse => self.push(Value::Bool(false)), OpCode::OpAttrs(count) => self.run_attrset(count)?, OpCode::OpAttrPath(count) => self.run_attr_path(count)?, OpCode::OpAttrsUpdate => { let rhs = self.pop().to_attrs()?; let lhs = self.pop().to_attrs()?; self.push(Value::Attrs(Rc::new(lhs.update(&rhs)))) } OpCode::OpAttrsSelect => { let key = self.pop().to_string()?; let attrs = self.pop().to_attrs()?; match attrs.select(key.as_str()) { Some(value) => self.push(value.clone()), None => { return Err(Error::AttributeNotFound { name: key.as_str().to_string(), }) } } } OpCode::OpAttrOrNotFound => { let key = self.pop().to_string()?; let value = match self.pop() { Value::Attrs(attrs) => match attrs.select(key.as_str()) { Some(value) => value.clone(), None => Value::NotFound, }, _ => Value::NotFound, }; self.push(value); } OpCode::OpAttrsIsSet => { let key = self.pop().to_string()?; let result = match self.pop() { Value::Attrs(attrs) => attrs.select(key.as_str()).is_some(), // Nix allows use of `?` on non-set types, but // always returns false in those cases. _ => false, }; self.push(Value::Bool(result)); } OpCode::OpList(count) => { let list = NixList::construct(count, self.stack.split_off(self.stack.len() - count)); self.push(Value::List(list)); } OpCode::OpConcat => { let rhs = self.pop().to_list()?; let lhs = self.pop().to_list()?; self.push(Value::List(lhs.concat(&rhs))) } OpCode::OpInterpolate(count) => self.run_interpolate(count)?, OpCode::OpJump(offset) => { self.ip += offset; } OpCode::OpJumpIfTrue(offset) => { if self.peek(0).as_bool()? { self.ip += offset; } } OpCode::OpJumpIfFalse(offset) => { if !self.peek(0).as_bool()? { self.ip += offset; } } OpCode::OpJumpIfNotFound(offset) => { if matches!(self.peek(0), Value::NotFound) { self.pop(); self.ip += offset; } } // These assertion operations error out if the stack // top is not of the expected type. This is necessary // to implement some specific behaviours of Nix // exactly. OpCode::OpAssertBool => { let val = self.peek(0); if !val.is_bool() { return Err(Error::TypeError { expected: "bool", actual: val.type_of(), }); } } // Remove the given number of elements from the stack, // but retain the top value. OpCode::OpCloseScope(count) => { // Immediately move the top value into the right // position. let target_idx = self.stack.len() - 1 - count; self.stack[target_idx] = self.pop(); // Then drop the remaining values. for _ in 0..(count - 1) { self.pop(); } } OpCode::OpGetLocal(local_idx) => { let value = self.stack[local_idx].clone(); self.push(value) } OpCode::OpPushWith(idx) => self.with_stack.push(idx), OpCode::OpPopWith => { self.with_stack.pop(); } OpCode::OpResolveWith => { let ident = self.pop().to_string()?; // Attempt to resolve the variable, starting at // the back of the with_stack. 'with: for idx in self.with_stack.iter().rev() { let with = self.stack[*idx].as_attrs()?; match with.select(ident.as_str()) { None => continue 'with, Some(val) => { self.push(val.clone()); continue 'dispatch; } } } return Err(Error::UnknownDynamicVariable(ident.to_string())); } OpCode::OpAssert => { if !self.pop().as_bool()? { return Err(Error::AssertionFailed); } } } #[cfg(feature = "disassembler")] { tracer.trace(&op, self.ip, &self.stack); } if self.ip == self.chunk.code.len() { return Ok(self.pop()); } } } // Construct runtime representation of an attr path (essentially // just a list of strings). // // The difference to the list construction operation is that this // forces all elements into strings, as attribute set keys are // required to be strict in Nix. fn run_attr_path(&mut self, count: usize) -> EvalResult<()> { debug_assert!(count > 1, "AttrPath needs at least two fragments"); let mut path = Vec::with_capacity(count); for _ in 0..count { path.push(self.pop().to_string()?); } self.push(Value::AttrPath(path)); Ok(()) } fn run_attrset(&mut self, count: usize) -> EvalResult<()> { let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))?; self.push(Value::Attrs(Rc::new(attrs))); Ok(()) } // Interpolate string fragments by popping the specified number of // fragments of the stack, evaluating them to strings, and pushing // the concatenated result string back on the stack. fn run_interpolate(&mut self, count: usize) -> EvalResult<()> { let mut out = String::new(); for _ in 0..count { out.push_str(self.pop().to_string()?.as_str()); } self.push(Value::String(out.into())); Ok(()) } } pub fn run_chunk(chunk: Chunk) -> EvalResult { let mut vm = VM { chunk, ip: 0, stack: vec![], with_stack: vec![], }; vm.run() }