//! This module implements Nix language strings. //! //! Nix language strings never need to be modified on the language //! level, allowing us to shave off some memory overhead and only //! paying the cost when creating new strings. use bstr::{BStr, BString, ByteSlice, Chars}; use rnix::ast; use std::alloc::{alloc, dealloc, handle_alloc_error, Layout}; use std::borrow::{Borrow, Cow}; use std::collections::HashSet; use std::ffi::c_void; use std::fmt::{self, Debug, Display}; use std::hash::Hash; use std::ops::Deref; use std::ptr::{self, NonNull}; use std::slice; use serde::de::{Deserializer, Visitor}; use serde::{Deserialize, Serialize}; #[derive(Clone, Debug, Serialize, Hash, PartialEq, Eq)] pub enum NixContextElement { /// A plain store path (e.g. source files copied to the store) Plain(String), /// Single output of a derivation, represented by its name and its derivation path. Single { name: String, derivation: String }, /// A reference to a complete derivation /// including its source and its binary closure. /// It is used for the `drvPath` attribute context. /// The referred string is the store path to /// the derivation path. Derivation(String), } /// Nix context strings representation in Tvix. This tracks a set of different kinds of string /// dependencies that we can come across during manipulation of our language primitives, mostly /// strings. There's some simple algebra of context strings and how they propagate w.r.t. primitive /// operations, e.g. concatenation, interpolation and other string operations. #[repr(transparent)] #[derive(Clone, Debug, Serialize, Default)] pub struct NixContext(HashSet); impl From for NixContext { fn from(value: NixContextElement) -> Self { Self([value].into()) } } impl From> for NixContext { fn from(value: HashSet) -> Self { Self(value) } } impl NixContext { /// Creates an empty context that can be populated /// and passed to form a contextful [NixString], albeit /// if the context is concretly empty, the resulting [NixString] /// will be contextless. pub fn new() -> Self { Self::default() } /// For internal consumers, we let people observe /// if the [NixContext] is actually empty or not /// to decide whether they want to skip the allocation /// of a full blown [HashSet]. pub(crate) fn is_empty(&self) -> bool { self.0.is_empty() } /// Consumes a new [NixContextElement] and add it if not already /// present in this context. pub fn append(mut self, other: NixContextElement) -> Self { self.0.insert(other); self } /// Extends the existing context with more context elements. pub fn extend(&mut self, iter: T) where T: IntoIterator, { self.0.extend(iter) } /// Copies from another [NixString] its context strings /// in this context. pub fn mimic(&mut self, other: &NixString) { if let Some(context) = other.context() { self.extend(context.iter().cloned()); } } /// Iterates over "plain" context elements, e.g. sources imported /// in the store without more information, i.e. `toFile` or coerced imported paths. /// It yields paths to the store. pub fn iter_plain(&self) -> impl Iterator { self.iter().filter_map(|elt| { if let NixContextElement::Plain(s) = elt { Some(s.as_str()) } else { None } }) } /// Iterates over "full derivations" context elements, e.g. something /// referring to their `drvPath`, i.e. their full sources and binary closure. /// It yields derivation paths. pub fn iter_derivation(&self) -> impl Iterator { self.iter().filter_map(|elt| { if let NixContextElement::Derivation(s) = elt { Some(s.as_str()) } else { None } }) } /// Iterates over "single" context elements, e.g. single derived paths, /// or also known as the single output of a given derivation. /// The first element of the tuple is the output name /// and the second element is the derivation path. pub fn iter_single_outputs(&self) -> impl Iterator { self.iter().filter_map(|elt| { if let NixContextElement::Single { name, derivation } = elt { Some((name.as_str(), derivation.as_str())) } else { None } }) } /// Iterates over any element of the context. pub fn iter(&self) -> impl Iterator { self.0.iter() } /// Produces a list of owned references to this current context, /// no matter its type. pub fn to_owned_references(self) -> Vec { self.0 .into_iter() .map(|ctx| match ctx { NixContextElement::Derivation(drv_path) => drv_path, NixContextElement::Plain(store_path) => store_path, NixContextElement::Single { derivation, .. } => derivation, }) .collect() } } impl IntoIterator for NixContext { type Item = NixContextElement; type IntoIter = std::collections::hash_set::IntoIter; fn into_iter(self) -> Self::IntoIter { self.0.into_iter() } } /// This type is never instantiated, but serves to document the memory layout of the actual heap /// allocation for Nix strings. #[allow(dead_code)] struct NixStringInner { /// The string context, if any. Note that this is boxed to take advantage of the null pointer /// niche, otherwise this field ends up being very large: /// /// ```notrust /// >> std::mem::size_of::>>() /// 48 /// /// >> std::mem::size_of::>>>() /// 8 /// ``` context: Option>, /// The length of the data, stored *inline in the allocation* length: usize, /// The actual data for the string itself. Will always be `length` bytes long data: [u8], } #[allow(clippy::zst_offset)] impl NixStringInner { /// Construct a [`Layout`] for a nix string allocation with the given length. /// /// Returns a tuple of: /// 1. The layout itself. /// 2. The offset of [`Self::length`] within the allocation, assuming the allocation starts at 0 /// 3. The offset of the data array within the allocation, assuming the allocation starts at 0 fn layout(len: usize) -> (Layout, usize, usize) { let layout = Layout::new::>>(); let (layout, len_offset) = layout.extend(Layout::new::()).unwrap(); let (layout, data_offset) = layout.extend(Layout::array::(len).unwrap()).unwrap(); (layout, len_offset, data_offset) } /// Returns the [`Layout`] for an *already-allocated* nix string, loading the length from the /// pointer. /// /// Returns a tuple of: /// 1. The layout itself. /// 2. The offset of [`Self::length`] within the allocation, assuming the allocation starts at 0 /// 3. The offset of the data array within the allocation, assuming the allocation starts at 0 /// /// # Safety /// /// This function must only be called on a pointer that has been properly initialized with /// [`Self::alloc`]. The data buffer may not necessarily be initialized unsafe fn layout_of(this: NonNull) -> (Layout, usize, usize) { let layout = Layout::new::>>(); let (_, len_offset) = layout.extend(Layout::new::()).unwrap(); // SAFETY: Layouts are linear, so even though we haven't involved data at all yet, we know // the len_offset is a valid offset into the second field of the allocation let len = *(this.as_ptr().add(len_offset) as *const usize); Self::layout(len) } /// Allocate an *uninitialized* nix string with the given length. Writes the length to the /// length value in the pointer, but leaves both context and data uninitialized /// /// This function is safe to call (as constructing pointers of any sort of validity is always /// safe in Rust) but it is unsafe to use the resulting pointer to do anything other than /// /// 1. Read the length /// 2. Write the context /// 3. Write the data /// /// until the string is fully initialized fn alloc(len: usize) -> NonNull { let (layout, len_offset, _data_offset) = Self::layout(len); debug_assert_ne!(layout.size(), 0); unsafe { // SAFETY: Layout has non-zero size, since the layout of the context and the // layout of the len both have non-zero size let ptr = alloc(layout); if let Some(this) = NonNull::new(ptr as *mut _) { // SAFETY: We've allocated with a layout that causes the len_offset to be in-bounds // and writeable, and if the allocation succeeded it won't wrap ((this.as_ptr() as *mut u8).add(len_offset) as *mut usize).write(len); debug_assert_eq!(Self::len(this), len); this } else { handle_alloc_error(layout); } } } /// Deallocate the Nix string at the given pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`] unsafe fn dealloc(this: NonNull) { let (layout, _, _) = Self::layout_of(this); // SAFETY: okay because of the safety guarantees of this method dealloc(this.as_ptr() as *mut u8, layout) } /// Return the length of the Nix string at the given pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`] unsafe fn len(this: NonNull) -> usize { let (_, len_offset, _) = Self::layout_of(this); // SAFETY: As long as the safety guarantees of this method are upheld, we've allocated with // a layout that causes the len_offset to be in-bounds and writeable, and if the allocation // succeeded it won't wrap *(this.as_ptr().add(len_offset) as *const usize) } /// Return a pointer to the context value within the given Nix string pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`] unsafe fn context_ptr(this: NonNull) -> *mut Option> { // SAFETY: The context is the first field in the layout of the allocation this.as_ptr() as *mut Option> } /// Construct a shared reference to the context value within the given Nix string pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`], and where the context has been properly initialized (by writing to the /// pointer returned from [`Self::context_ptr`]). /// /// Also, all the normal Rust rules about pointer-to-reference conversion apply. See /// [`NonNull::as_ref`] for more. unsafe fn context_ref<'a>(this: NonNull) -> &'a Option> { Self::context_ptr(this).as_ref().unwrap() } /// Construct a mutable reference to the context value within the given Nix string pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`], and where the context has been properly initialized (by writing to the /// pointer returned from [`Self::context_ptr`]). /// /// Also, all the normal Rust rules about pointer-to-reference conversion apply. See /// [`NonNull::as_mut`] for more. unsafe fn context_mut<'a>(this: NonNull) -> &'a mut Option> { Self::context_ptr(this).as_mut().unwrap() } /// Return a pointer to the data array within the given Nix string pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`] unsafe fn data_ptr(this: NonNull) -> *mut u8 { let (_, _, data_offset) = Self::layout_of(this); // SAFETY: data is the third field in the layout of the allocation this.as_ptr().add(data_offset) as *mut u8 } /// Construct a shared reference to the data slice within the given Nix string pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`], and where the data array has been properly initialized (by writing to the /// pointer returned from [`Self::data_ptr`]). /// /// Also, all the normal Rust rules about pointer-to-reference conversion apply. See /// [`slice::from_raw_parts`] for more. unsafe fn data_slice<'a>(this: NonNull) -> &'a [u8] { let len = Self::len(this); let data = Self::data_ptr(this); slice::from_raw_parts(data, len) } /// Construct a mutable reference to the data slice within the given Nix string pointer /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`], and where the data array has been properly initialized (by writing to the /// pointer returned from [`Self::data_ptr`]). /// /// Also, all the normal Rust rules about pointer-to-reference conversion apply. See /// [`slice::from_raw_parts_mut`] for more. #[allow(dead_code)] unsafe fn data_slice_mut<'a>(this: NonNull) -> &'a mut [u8] { let len = Self::len(this); let data = Self::data_ptr(this); slice::from_raw_parts_mut(data, len) } /// Clone the Nix string pointed to by this pointer, and return a pointer to a new Nix string /// containing the same data and context. /// /// # Safety /// /// This function must only be called with a pointer that has been properly initialized with /// [`Self::alloc`], and where the context has been properly initialized (by writing to the /// pointer returned from [`Self::context_ptr`]), and the data array has been properly /// initialized (by writing to the pointer returned from [`Self::data_ptr`]). unsafe fn clone(this: NonNull) -> NonNull { let (layout, _, _) = Self::layout_of(this); let ptr = alloc(layout); if let Some(new) = NonNull::new(ptr as *mut _) { ptr::copy_nonoverlapping(this.as_ptr(), new.as_ptr(), layout.size()); Self::context_ptr(new).write(Self::context_ref(this).clone()); new } else { handle_alloc_error(layout); } } } /// Nix string values /// /// # Internals /// /// For performance reasons (to keep allocations small, and to avoid indirections), [`NixString`] is /// represented as a single *thin* pointer to a packed data structure containing the /// [context][NixContext] and the string data itself (which is a raw byte array, to match the Nix /// string semantics that allow any array of bytes to be represented by a string). /// This memory representation is documented in [`NixStringInner`], but since Rust prefers to deal /// with slices via *fat pointers* (pointers that include the length in the *pointer*, not in the /// heap allocation), we have to do mostly manual layout management and allocation for this /// representation. See the documentation for the methods of [`NixStringInner`] for more information pub struct NixString(NonNull); unsafe impl Send for NixString {} unsafe impl Sync for NixString {} impl Drop for NixString { fn drop(&mut self) { // SAFETY: There's no way to construct a NixString that doesn't leave the allocation correct // according to the rules of dealloc unsafe { NixStringInner::dealloc(self.0); } } } impl Clone for NixString { fn clone(&self) -> Self { // SAFETY: There's no way to construct a NixString that doesn't leave the allocation correct // according to the rules of clone unsafe { Self(NixStringInner::clone(self.0)) } } } impl Debug for NixString { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let Some(ctx) = self.context() { f.debug_struct("NixString") .field("context", ctx) .field("data", &self.as_bstr()) .finish() } else { write!(f, "{:?}", self.as_bstr()) } } } impl PartialEq for NixString { fn eq(&self, other: &Self) -> bool { self.as_bstr() == other.as_bstr() } } impl Eq for NixString {} impl PartialEq<&[u8]> for NixString { fn eq(&self, other: &&[u8]) -> bool { **self == **other } } impl PartialEq<&str> for NixString { fn eq(&self, other: &&str) -> bool { **self == other.as_bytes() } } impl PartialOrd for NixString { fn partial_cmp(&self, other: &Self) -> Option { Some(self.cmp(other)) } } impl Ord for NixString { fn cmp(&self, other: &Self) -> std::cmp::Ordering { self.as_bstr().cmp(other.as_bstr()) } } impl From> for NixString { fn from(value: Box) -> Self { Self::new(&value, None) } } impl From for NixString { fn from(value: BString) -> Self { Self::new(&value, None) } } impl From<&BStr> for NixString { fn from(value: &BStr) -> Self { value.to_owned().into() } } impl From<&[u8]> for NixString { fn from(value: &[u8]) -> Self { Self::from(value.to_owned()) } } impl From> for NixString { fn from(value: Vec) -> Self { value.into_boxed_slice().into() } } impl From> for NixString { fn from(value: Box<[u8]>) -> Self { Self::new(&value, None) } } impl From<&str> for NixString { fn from(s: &str) -> Self { s.as_bytes().into() } } impl From for NixString { fn from(s: String) -> Self { s.into_bytes().into() } } impl From<(T, Option>)> for NixString where NixString: From, { fn from((s, ctx): (T, Option>)) -> Self { Self::new(NixString::from(s).as_ref(), ctx) } } impl From> for NixString { fn from(s: Box) -> Self { s.into_boxed_bytes().into() } } impl From for NixString { fn from(ident: ast::Ident) -> Self { ident.ident_token().unwrap().text().into() } } impl<'a> From<&'a NixString> for &'a BStr { fn from(s: &'a NixString) -> Self { s.as_bstr() } } // No impl From for String, that one quotes. impl From for BString { fn from(s: NixString) -> Self { s.as_bstr().to_owned() } } impl AsRef<[u8]> for NixString { fn as_ref(&self) -> &[u8] { self.as_bytes() } } impl Borrow for NixString { fn borrow(&self) -> &BStr { self.as_bstr() } } impl Hash for NixString { fn hash(&self, state: &mut H) { self.as_bstr().hash(state) } } impl<'de> Deserialize<'de> for NixString { fn deserialize(deserializer: D) -> Result where D: Deserializer<'de>, { struct StringVisitor; impl<'de> Visitor<'de> for StringVisitor { type Value = NixString; fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result { formatter.write_str("a valid Nix string") } fn visit_string(self, v: String) -> Result where E: serde::de::Error, { Ok(v.into()) } fn visit_str(self, v: &str) -> Result where E: serde::de::Error, { Ok(v.into()) } } deserializer.deserialize_string(StringVisitor) } } impl Deref for NixString { type Target = BStr; fn deref(&self) -> &Self::Target { self.as_bstr() } } #[cfg(feature = "arbitrary")] mod arbitrary { use super::*; use proptest::prelude::{any_with, Arbitrary}; use proptest::strategy::{BoxedStrategy, Strategy}; impl Arbitrary for NixString { type Parameters = ::Parameters; type Strategy = BoxedStrategy; fn arbitrary_with(args: Self::Parameters) -> Self::Strategy { any_with::(args).prop_map(Self::from).boxed() } } } impl NixString { fn new(contents: &[u8], context: Option>) -> Self { debug_assert!( !context.as_deref().is_some_and(NixContext::is_empty), "BUG: initialized with empty context" ); // SAFETY: We're always fully initializing a NixString here: // // 1. NixStringInner::alloc sets up the len for us // 2. We set the context, using ptr::write to make sure that the uninitialized memory isn't // read or dropped // 3. We set the data, using copy_from_nonoverlapping to make sure that the uninitialized // memory isn't read or dropped // // Only *then* can we construct a NixString unsafe { let inner = NixStringInner::alloc(contents.len()); NixStringInner::context_ptr(inner).write(context); NixStringInner::data_ptr(inner) .copy_from_nonoverlapping(contents.as_ptr(), contents.len()); Self(inner) } } pub fn new_inherit_context_from(other: &NixString, new_contents: T) -> Self where NixString: From, { Self::new( Self::from(new_contents).as_ref(), other .context() .filter(|ctx| !ctx.is_empty()) .map(|c| Box::new(c.clone())), ) } pub fn new_context_from(context: NixContext, contents: T) -> Self where NixString: From, { Self::new( Self::from(contents).as_ref(), if context.is_empty() { None } else { Some(Box::new(context)) }, ) } pub fn as_bstr(&self) -> &BStr { BStr::new(self.as_bytes()) } pub fn as_bytes(&self) -> &[u8] { // SAFETY: There's no way to construct an uninitialized NixString (see the SAFETY comment in // `new`) unsafe { NixStringInner::data_slice(self.0) } } pub fn into_bstring(self) -> BString { self.as_bstr().to_owned() } /// Return a displayable representation of the string as an /// identifier. /// /// This is used when printing out strings used as e.g. attribute /// set keys, as those are only escaped in the presence of special /// characters. pub fn ident_str(&self) -> Cow { let escaped = match self.to_str_lossy() { Cow::Borrowed(s) => nix_escape_string(s), Cow::Owned(s) => nix_escape_string(&s).into_owned().into(), }; match escaped { // A borrowed string is unchanged and can be returned as // is. Cow::Borrowed(_) => { if is_valid_nix_identifier(&escaped) && !is_keyword(&escaped) { escaped } else { Cow::Owned(format!("\"{}\"", escaped)) } } // An owned string has escapes, and needs the outer quotes // for display. Cow::Owned(s) => Cow::Owned(format!("\"{}\"", s)), } } pub fn concat(&self, other: &Self) -> Self { let mut s = self.to_vec(); s.extend(&(***other)); let context = [self.context(), other.context()] .into_iter() .flatten() .fold(NixContext::new(), |mut acc_ctx, new_ctx| { // TODO: consume new_ctx? acc_ctx.extend(new_ctx.iter().cloned()); acc_ctx }); Self::new_context_from(context, s) } pub(crate) fn context(&self) -> Option<&NixContext> { // SAFETY: There's no way to construct an uninitialized or invalid NixString (see the SAFETY // comment in `new`). // // Also, we're using the same lifetime and mutability as self, to fit the // pointer-to-reference conversion rules let context = unsafe { NixStringInner::context_ref(self.0).as_deref() }; debug_assert!( !context.is_some_and(NixContext::is_empty), "BUG: empty context" ); context } pub(crate) fn context_mut(&mut self) -> &mut Option> { // SAFETY: There's no way to construct an uninitialized or invalid NixString (see the SAFETY // comment in `new`). // // Also, we're using the same lifetime and mutability as self, to fit the // pointer-to-reference conversion rules let context = unsafe { NixStringInner::context_mut(self.0) }; debug_assert!( !context.as_deref().is_some_and(NixContext::is_empty), "BUG: empty context" ); context } pub fn iter_context(&self) -> impl Iterator { self.context().into_iter() } pub fn iter_plain(&self) -> impl Iterator { self.iter_context().flat_map(|context| context.iter_plain()) } pub fn iter_derivation(&self) -> impl Iterator { return self .iter_context() .flat_map(|context| context.iter_derivation()); } pub fn iter_single_outputs(&self) -> impl Iterator { return self .iter_context() .flat_map(|context| context.iter_single_outputs()); } /// Returns whether this Nix string possess a context or not. pub fn has_context(&self) -> bool { self.context().is_some() } /// This clears the context of the string, returning /// the removed dependency tracking information. pub fn take_context(&mut self) -> Option> { self.context_mut().take() } /// This clears the context of that string, losing /// all dependency tracking information. pub fn clear_context(&mut self) { let _ = self.take_context(); } pub fn chars(&self) -> Chars<'_> { self.as_bstr().chars() } } fn nix_escape_char(ch: char, next: Option<&char>) -> Option<&'static str> { match (ch, next) { ('\\', _) => Some("\\\\"), ('"', _) => Some("\\\""), ('\n', _) => Some("\\n"), ('\t', _) => Some("\\t"), ('\r', _) => Some("\\r"), ('$', Some('{')) => Some("\\$"), _ => None, } } /// Return true if this string is a keyword -- character strings /// which lexically match the "identifier" production but are not /// parsed as identifiers. See also cppnix commit /// b72bc4a972fe568744d98b89d63adcd504cb586c. fn is_keyword(s: &str) -> bool { matches!( s, "if" | "then" | "else" | "assert" | "with" | "let" | "in" | "rec" | "inherit" ) } /// Return true if this string can be used as an identifier in Nix. fn is_valid_nix_identifier(s: &str) -> bool { // adapted from rnix-parser's tokenizer.rs let mut chars = s.chars(); match chars.next() { Some('a'..='z' | 'A'..='Z' | '_') => (), _ => return false, } for c in chars { match c { 'a'..='z' | 'A'..='Z' | '0'..='9' | '_' | '-' | '\'' => (), _ => return false, } } true } /// Escape a Nix string for display, as most user-visible representation /// are escaped strings. /// /// Note that this does not add the outer pair of surrounding quotes. fn nix_escape_string(input: &str) -> Cow { let mut iter = input.char_indices().peekable(); while let Some((i, c)) = iter.next() { if let Some(esc) = nix_escape_char(c, iter.peek().map(|(_, c)| c)) { let mut escaped = String::with_capacity(input.len()); escaped.push_str(&input[..i]); escaped.push_str(esc); // In theory we calculate how many bytes it takes to represent `esc` // in UTF-8 and use that for the offset. It is, however, safe to // assume that to be 1, as all characters that can be escaped in a // Nix string are ASCII. let mut inner_iter = input[i + 1..].chars().peekable(); while let Some(c) = inner_iter.next() { match nix_escape_char(c, inner_iter.peek()) { Some(esc) => escaped.push_str(esc), None => escaped.push(c), } } return Cow::Owned(escaped); } } Cow::Borrowed(input) } impl Display for NixString { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { f.write_str("\"")?; f.write_str(&nix_escape_string(&self.to_str_lossy()))?; f.write_str("\"") } } #[cfg(test)] mod tests { use test_strategy::proptest; use super::*; use crate::properties::{eq_laws, hash_laws, ord_laws}; #[test] fn size() { assert_eq!(std::mem::size_of::(), 8); } #[proptest] fn clone_strings(s: NixString) { drop(s.clone()) } eq_laws!(NixString); hash_laws!(NixString); ord_laws!(NixString); }