//! This module implements compiler logic related to name/value binding //! definitions (that is, attribute sets and let-expressions). //! //! In the case of recursive scopes these cases share almost all of their //! (fairly complex) logic. use super::*; // Data structures to track the bindings observed in the second pass, and // forward the information needed to compile their value. enum Binding { InheritFrom { namespace: ast::Expr, name: SmolStr, span: Span, }, Plain { expr: ast::Expr, }, } enum KeySlot { /// There is no key slot (`let`-expressions do not emit their key). None { name: SmolStr }, /// The key is statically known and has a slot. Static { slot: LocalIdx, name: SmolStr }, /// The key is dynamic, i.e. only known at runtime, and must be compiled /// into its slot. Dynamic { slot: LocalIdx, attr: ast::Attr }, } struct TrackedBinding { key_slot: KeySlot, value_slot: LocalIdx, binding: Binding, } /// What kind of bindings scope is being compiled? #[derive(Clone, Copy, PartialEq)] enum BindingsKind { /// Standard `let ... in ...`-expression. LetIn, /// Non-recursive attribute set. Attrs, /// Recursive attribute set. RecAttrs, } impl BindingsKind { fn is_attrs(&self) -> bool { matches!(self, BindingsKind::Attrs | BindingsKind::RecAttrs) } } /// AST-traversing functions related to bindings. impl Compiler<'_> { /// Compile all inherits of a node with entries that do *not* have a /// namespace to inherit from, and return the remaining ones that do. fn compile_plain_inherits( &mut self, slot: LocalIdx, kind: BindingsKind, count: &mut usize, node: &N, ) -> Vec<(ast::Expr, SmolStr, Span)> where N: ToSpan + ast::HasEntry, { // Pass over all inherits, resolving only those without namespaces. // Since they always resolve in a higher scope, we can just compile and // declare them immediately. // // Inherits with namespaces are returned to the caller. let mut inherit_froms: Vec<(ast::Expr, SmolStr, Span)> = vec![]; for inherit in node.inherits() { match inherit.from() { // Within a `let` binding, inheriting from the outer scope is a // no-op *if* the scope is fully static. None if !kind.is_attrs() && !self.scope().has_with() => { self.emit_warning(&inherit, WarningKind::UselessInherit); continue; } None => { for attr in inherit.attrs() { let name = match self.expr_static_attr_str(&attr) { Some(name) => name, None => { self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit")); continue; } }; // If the identifier resolves statically in a `let`, it // has precedence over dynamic bindings, and the inherit // is useless. if kind == BindingsKind::LetIn && matches!( self.scope_mut().resolve_local(&name), LocalPosition::Known(_) ) { self.emit_warning(&attr, WarningKind::UselessInherit); continue; } *count += 1; // Place key on the stack when compiling attribute sets. if kind.is_attrs() { self.emit_constant(Value::String(name.clone().into()), &attr); let span = self.span_for(&attr); self.scope_mut().declare_phantom(span, true); } // Place the value on the stack. Note that because plain // inherits are always in the outer scope, the slot of // *this* scope itself is used. self.compile_identifier_access(slot, &name, &attr); // In non-recursive attribute sets, the key slot must be // a phantom (i.e. the identifier can not be resolved in // this scope). let idx = if kind == BindingsKind::Attrs { let span = self.span_for(&attr); self.scope_mut().declare_phantom(span, false) } else { self.declare_local(&attr, name) }; self.scope_mut().mark_initialised(idx); } } Some(from) => { for attr in inherit.attrs() { let name = match self.expr_static_attr_str(&attr) { Some(name) => name, None => { self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit")); continue; } }; *count += 1; inherit_froms.push((from.expr().unwrap(), name, self.span_for(&attr))); } } } } inherit_froms } /// Declare all namespaced inherits, that is inherits which are inheriting /// values from an attribute set. /// /// This only ensures that the locals stack is aware of the inherits, it /// does not yet emit bytecode that places them on the stack. This is up to /// the owner of the `bindings` vector, which this function will populate. fn declare_namespaced_inherits( &mut self, kind: BindingsKind, inherit_froms: Vec<(ast::Expr, SmolStr, Span)>, bindings: &mut Vec, ) { for (from, name, span) in inherit_froms { let key_slot = if kind.is_attrs() { // In an attribute set, the keys themselves are placed on the // stack but their stack slot is inaccessible (it is only // consumed by `OpAttrs`). KeySlot::Static { slot: self.scope_mut().declare_phantom(span, false), name: name.clone(), } } else { KeySlot::None { name: name.clone() } }; let value_slot = match kind { // In recursive scopes, the value needs to be accessible on the // stack. BindingsKind::LetIn | BindingsKind::RecAttrs => { self.declare_local(&span, name.clone()) } // In non-recursive attribute sets, the value is inaccessible // (only consumed by `OpAttrs`). BindingsKind::Attrs => self.scope_mut().declare_phantom(span, false), }; bindings.push(TrackedBinding { key_slot, value_slot, binding: Binding::InheritFrom { namespace: from, name, span, }, }); } } /// Declare all regular bindings (i.e. `key = value;`) in a bindings scope, /// but do not yet compile their values. fn declare_bindings( &mut self, kind: BindingsKind, count: &mut usize, bindings: &mut Vec, node: &N, ) where N: ToSpan + ast::HasEntry, { for entry in node.attrpath_values() { *count += 1; let mut path = entry.attrpath().unwrap().attrs().collect::>(); if path.len() != 1 { self.emit_error(&entry, ErrorKind::NotImplemented("nested bindings :(")); continue; } let key_span = self.span_for(&path[0]); let key_slot = match self.expr_static_attr_str(&path[0]) { Some(name) if kind.is_attrs() => KeySlot::Static { name, slot: self.scope_mut().declare_phantom(key_span, false), }, Some(name) => KeySlot::None { name }, None if kind.is_attrs() => KeySlot::Dynamic { attr: path.pop().unwrap(), slot: self.scope_mut().declare_phantom(key_span, false), }, None => { self.emit_error(&path[0], ErrorKind::DynamicKeyInScope("let-expression")); continue; } }; let value_slot = match kind { BindingsKind::LetIn | BindingsKind::RecAttrs => match &key_slot { // In recursive scopes, the value needs to be accessible on the // stack if it is statically known KeySlot::None { name } | KeySlot::Static { name, .. } => { self.declare_local(&key_span, name.as_str()) } // Dynamic values are never resolvable (as their names are // of course only known at runtime). // // Note: This branch is unreachable in `let`-expressions. KeySlot::Dynamic { .. } => self.scope_mut().declare_phantom(key_span, false), }, // In non-recursive attribute sets, the value is inaccessible // (only consumed by `OpAttrs`). BindingsKind::Attrs => self.scope_mut().declare_phantom(key_span, false), }; bindings.push(TrackedBinding { key_slot, value_slot, binding: Binding::Plain { expr: entry.value().unwrap(), }, }); } } /// Compile the statically known entries of an attribute set. Which keys are /// which is not known from the iterator, so discovered dynamic keys are /// returned from here. fn compile_static_attr_entries( &mut self, count: &mut usize, entries: AstChildren, ) -> Vec { let mut dynamic_attrs: Vec = vec![]; 'entries: for kv in entries { // Attempt to turn the attrpath into a list of static strings, but // abort this process if any dynamic fragments are encountered. let static_attrpath: Option> = kv .attrpath() .unwrap() .attrs() .map(|a| self.expr_static_attr_str(&a)) .collect(); let fragments = match static_attrpath { Some(fragments) => fragments, None => { dynamic_attrs.push(kv); continue 'entries; } }; // At this point we can increase the counter because we know that // this particular attribute is static and can thus be processed // here. *count += 1; let key_count = fragments.len(); for fragment in fragments.into_iter() { self.emit_constant(Value::String(fragment.into()), &kv.attrpath().unwrap()); } // We're done with the key if there was only one fragment, otherwise // we need to emit an instruction to construct the attribute path. if key_count > 1 { self.push_op( OpCode::OpAttrPath(Count(key_count)), &kv.attrpath().unwrap(), ); } // The value is just compiled as normal so that its resulting value // is on the stack when the attribute set is constructed at runtime. let value_span = self.span_for(&kv.value().unwrap()); let value_slot = self.scope_mut().declare_phantom(value_span, false); self.compile(value_slot, kv.value().unwrap()); self.scope_mut().mark_initialised(value_slot); } dynamic_attrs } /// Compile the dynamic entries of an attribute set, where keys are only /// known at runtime. fn compile_dynamic_attr_entries( &mut self, count: &mut usize, entries: Vec, ) { for entry in entries.into_iter() { *count += 1; let mut key_count = 0; let key_span = self.span_for(&entry.attrpath().unwrap()); let key_idx = self.scope_mut().declare_phantom(key_span, false); for fragment in entry.attrpath().unwrap().attrs() { // Key fragments can contain dynamic expressions, which makes // accounting for their stack slots very tricky. // // In order to ensure the locals are correctly cleaned up, we // essentially treat any key fragment after the first one (which // has a locals index that will become that of the final key // itself) as being part of a separate scope, which results in // the somewhat annoying setup logic below. let fragment_slot = match key_count { 0 => key_idx, 1 => { self.scope_mut().begin_scope(); self.scope_mut().declare_phantom(key_span, false) } _ => self.scope_mut().declare_phantom(key_span, false), }; key_count += 1; self.compile_attr(fragment_slot, fragment); self.scope_mut().mark_initialised(fragment_slot); } // We're done with the key if there was only one fragment, otherwise // we need to emit an instruction to construct the attribute path. if key_count > 1 { self.push_op( OpCode::OpAttrPath(Count(key_count)), &entry.attrpath().unwrap(), ); // Close the temporary scope that was set up for the key // fragments. self.scope_mut().end_scope(); } // The value is just compiled as normal so that its resulting value // is on the stack when the attribute set is constructed at runtime. let value_span = self.span_for(&entry.value().unwrap()); let value_slot = self.scope_mut().declare_phantom(value_span, false); self.compile(value_slot, entry.value().unwrap()); self.scope_mut().mark_initialised(value_slot); } } /// Compile attribute set literals into equivalent bytecode. /// /// This is complicated by a number of features specific to Nix attribute /// sets, most importantly: /// /// 1. Keys can be dynamically constructed through interpolation. /// 2. Keys can refer to nested attribute sets. /// 3. Attribute sets can (optionally) be recursive. pub(super) fn compile_attr_set(&mut self, slot: LocalIdx, node: ast::AttrSet) { // Open a scope to track the positions of the temporaries used by the // `OpAttrs` instruction. self.scope_mut().begin_scope(); if node.rec_token().is_some() { let count = self.compile_recursive_scope(slot, BindingsKind::RecAttrs, &node); self.push_op(OpCode::OpAttrs(Count(count)), &node); } else { let mut count = 0; // TODO: merge this with the above, for now only inherit is unified let mut bindings: Vec = vec![]; let inherit_froms = self.compile_plain_inherits(slot, BindingsKind::Attrs, &mut count, &node); self.declare_namespaced_inherits(BindingsKind::Attrs, inherit_froms, &mut bindings); self.bind_values(bindings); let dynamic_entries = self.compile_static_attr_entries(&mut count, node.attrpath_values()); self.compile_dynamic_attr_entries(&mut count, dynamic_entries); self.push_op(OpCode::OpAttrs(Count(count)), &node); } // Remove the temporary scope, but do not emit any additional cleanup // (OpAttrs consumes all of these locals). self.scope_mut().end_scope(); } /// Actually binds all tracked bindings by emitting the bytecode that places /// them in their stack slots. fn bind_values(&mut self, bindings: Vec) { let mut value_indices: Vec = vec![]; for binding in bindings.into_iter() { value_indices.push(binding.value_slot); match binding.key_slot { KeySlot::None { .. } => {} // nothing to do here KeySlot::Static { slot, name } => { let span = self.scope()[slot].span; self.emit_constant(Value::String(name.into()), &span); self.scope_mut().mark_initialised(slot); } KeySlot::Dynamic { slot, attr } => { self.compile_attr(slot, attr); self.scope_mut().mark_initialised(slot); } } match binding.binding { // This entry is an inherit (from) expr. The value is placed on // the stack by selecting an attribute. Binding::InheritFrom { namespace, name, span, } => { // Create a thunk wrapping value (which may be one as well) // to avoid forcing the from expr too early. self.thunk(binding.value_slot, &namespace, move |c, n, s| { c.compile(s, n.clone()); c.emit_force(n); c.emit_constant(Value::String(name.into()), &span); c.push_op(OpCode::OpAttrsSelect, &span); }) } // Binding is "just" a plain expression that needs to be // compiled. Binding::Plain { expr } => self.compile(binding.value_slot, expr), } // Any code after this point will observe the value in the right // stack slot, so mark it as initialised. self.scope_mut().mark_initialised(binding.value_slot); } // Final pass to emit finaliser instructions if necessary. for idx in value_indices { if self.scope()[idx].needs_finaliser { let stack_idx = self.scope().stack_index(idx); let span = self.scope()[idx].span; self.push_op(OpCode::OpFinalise(stack_idx), &span); } } } fn compile_recursive_scope(&mut self, slot: LocalIdx, kind: BindingsKind, node: &N) -> usize where N: ToSpan + ast::HasEntry, { let mut count = 0; self.scope_mut().begin_scope(); // Vector to track all observed bindings. let mut bindings: Vec = vec![]; let inherit_froms = self.compile_plain_inherits(slot, kind, &mut count, node); self.declare_namespaced_inherits(kind, inherit_froms, &mut bindings); self.declare_bindings(kind, &mut count, &mut bindings, node); // Actually bind values and ensure they are on the stack. self.bind_values(bindings); count } /// Compile a standard `let ...; in ...` expression. /// /// Unless in a non-standard scope, the encountered values are simply pushed /// on the stack and their indices noted in the entries vector. pub(super) fn compile_let_in(&mut self, slot: LocalIdx, node: ast::LetIn) { self.compile_recursive_scope(slot, BindingsKind::LetIn, &node); // Deal with the body, then clean up the locals afterwards. self.compile(slot, node.body().unwrap()); self.cleanup_scope(&node); } pub(super) fn compile_legacy_let(&mut self, slot: LocalIdx, node: ast::LegacyLet) { self.emit_warning(&node, WarningKind::DeprecatedLegacyLet); self.scope_mut().begin_scope(); self.compile_recursive_scope(slot, BindingsKind::RecAttrs, &node); self.push_op(OpCode::OpAttrs(Count(node.entries().count())), &node); self.emit_constant(Value::String(SmolStr::new_inline("body").into()), &node); self.push_op(OpCode::OpAttrsSelect, &node); } /// Resolve and compile access to an identifier in the scope. fn compile_identifier_access( &mut self, slot: LocalIdx, ident: &str, node: &N, ) { // If the identifier is a global, and it is not poisoned, emit the // global directly. if let Some(global) = self.globals.get(ident) { if !self.scope().is_poisoned(ident) { global.clone()(self, self.span_for(node)); return; } } match self.scope_mut().resolve_local(ident) { LocalPosition::Unknown => { // Are we possibly dealing with an upvalue? if let Some(idx) = self.resolve_upvalue(self.contexts.len() - 1, ident, node) { self.push_op(OpCode::OpGetUpvalue(idx), node); return; } // If there is a non-empty `with`-stack (or a parent context // with one), emit a runtime dynamic resolution instruction. if self.has_dynamic_ancestor() { self.emit_constant(Value::String(SmolStr::new(ident).into()), node); self.push_op(OpCode::OpResolveWith, node); return; } // Otherwise, this variable is missing. self.emit_error(node, ErrorKind::UnknownStaticVariable); } LocalPosition::Known(idx) => { let stack_idx = self.scope().stack_index(idx); self.push_op(OpCode::OpGetLocal(stack_idx), node); } // This identifier is referring to a value from the same scope which // is not yet defined. This identifier access must be thunked. LocalPosition::Recursive(idx) => self.thunk(slot, node, move |compiler, node, _| { let upvalue_idx = compiler.add_upvalue( compiler.contexts.len() - 1, node, UpvalueKind::Local(idx), ); compiler.push_op(OpCode::OpGetUpvalue(upvalue_idx), node); }), }; } pub(super) fn compile_ident(&mut self, slot: LocalIdx, node: ast::Ident) { let ident = node.ident_token().unwrap(); self.compile_identifier_access(slot, ident.text(), &node); } } /// Private compiler helpers related to bindings. impl Compiler<'_> { fn resolve_upvalue( &mut self, ctx_idx: usize, name: &str, node: &N, ) -> Option { if ctx_idx == 0 { // There can not be any upvalue at the outermost context. return None; } // Determine whether the upvalue is a local in the enclosing context. match self.contexts[ctx_idx - 1].scope.resolve_local(name) { // recursive upvalues are dealt with the same way as standard known // ones, as thunks and closures are guaranteed to be placed on the // stack (i.e. in the right position) *during* their runtime // construction LocalPosition::Known(idx) | LocalPosition::Recursive(idx) => { return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Local(idx))) } LocalPosition::Unknown => { /* continue below */ } }; // If the upvalue comes from even further up, we need to recurse to make // sure that the upvalues are created at each level. if let Some(idx) = self.resolve_upvalue(ctx_idx - 1, name, node) { return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Upvalue(idx))); } None } fn add_upvalue( &mut self, ctx_idx: usize, node: &N, kind: UpvalueKind, ) -> UpvalueIdx { // If there is already an upvalue closing over the specified index, // retrieve that instead. for (idx, existing) in self.contexts[ctx_idx].scope.upvalues.iter().enumerate() { if existing.kind == kind { return UpvalueIdx(idx); } } let span = self.span_for(node); self.contexts[ctx_idx] .scope .upvalues .push(Upvalue { kind, span }); let idx = UpvalueIdx(self.contexts[ctx_idx].lambda.upvalue_count); self.contexts[ctx_idx].lambda.upvalue_count += 1; idx } /// Convert a non-dynamic string expression to a string if possible. fn expr_static_str(&self, node: &ast::Str) -> Option { let mut parts = node.normalized_parts(); if parts.len() != 1 { return None; } if let Some(ast::InterpolPart::Literal(lit)) = parts.pop() { return Some(SmolStr::new(&lit)); } None } /// Convert the provided `ast::Attr` into a statically known string if /// possible. // TODO(tazjin): these should probably be SmolStr fn expr_static_attr_str(&self, node: &ast::Attr) -> Option { match node { ast::Attr::Ident(ident) => Some(ident.ident_token().unwrap().text().into()), ast::Attr::Str(s) => self.expr_static_str(s), // The dynamic node type is just a wrapper. C++ Nix does not care // about the dynamic wrapper when determining whether the node // itself is dynamic, it depends solely on the expression inside // (i.e. `let ${"a"} = 1; in a` is valid). ast::Attr::Dynamic(ref dynamic) => match dynamic.expr().unwrap() { ast::Expr::Str(s) => self.expr_static_str(&s), _ => None, }, } } }