use std::{ collections::HashMap, io::{self, Cursor}, pin::pin, sync::Arc, task::Poll, }; use data_encoding::HEXLOWER; use fastcdc::v2020::AsyncStreamCDC; use futures::Future; use object_store::{path::Path, ObjectStore}; use pin_project_lite::pin_project; use prost::Message; use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt}; use tokio_stream::StreamExt; use tonic::async_trait; use tracing::{debug, instrument, trace, Level}; use url::Url; use crate::{ composition::{CompositionContext, ServiceBuilder}, proto::{stat_blob_response::ChunkMeta, StatBlobResponse}, B3Digest, B3HashingReader, }; use super::{BlobReader, BlobService, BlobWriter, ChunkedReader}; #[derive(Clone)] pub struct ObjectStoreBlobService { object_store: Arc, base_path: Path, /// Average chunk size for FastCDC, in bytes. /// min value is half, max value double of that number. avg_chunk_size: u32, } /// Uses any object storage supported by the [object_store] crate to provide a /// tvix-castore [BlobService]. /// /// # Data format /// Data is organized in "blobs" and "chunks". /// Blobs don't hold the actual data, but instead contain a list of more /// granular chunks that assemble to the contents requested. /// This allows clients to seek, and not download chunks they already have /// locally, as it's referred to from other files. /// Check `rpc_blobstore` and more general BlobStore docs on that. /// /// ## Blobs /// Stored at `${base_path}/blobs/b3/$digest_key`. They contains the serialized /// StatBlobResponse for the blob with the digest. /// /// ## Chunks /// Chunks are stored at `${base_path}/chunks/b3/$digest_key`. They contain /// the literal contents of the chunk, but are zstd-compressed. /// /// ## Digest key sharding /// The blake3 digest encoded in lower hex, and sharded after the second /// character. /// The blob for "Hello World" is stored at /// `${base_path}/blobs/b3/41/41f8394111eb713a22165c46c90ab8f0fd9399c92028fd6d288944b23ff5bf76`. /// /// This reduces the number of files in the same directory, which would be a /// problem at least when using [object_store::local::LocalFileSystem]. /// /// # Future changes /// There's no guarantees about this being a final format yet. /// Once object_store gets support for additional metadata / content-types, /// we can eliminate some requests (small blobs only consisting of a single /// chunk can be stored as-is, without the blob index file). /// It also allows signalling any compression of chunks in the content-type. /// Migration *should* be possible by simply adding the right content-types to /// all keys stored so far, but no promises ;-) impl ObjectStoreBlobService { /// Constructs a new [ObjectStoreBlobService] from a [Url] supported by /// [object_store]. /// Any path suffix becomes the base path of the object store. /// additional options, the same as in [object_store::parse_url_opts] can /// be passed. pub fn parse_url_opts(url: &Url, options: I) -> Result where I: IntoIterator, K: AsRef, V: Into, { let (object_store, path) = object_store::parse_url_opts(url, options)?; Ok(Self { object_store: Arc::new(object_store), base_path: path, avg_chunk_size: 256 * 1024, }) } /// Like [Self::parse_url_opts], except without the options. pub fn parse_url(url: &Url) -> Result { Self::parse_url_opts(url, Vec::<(String, String)>::new()) } } #[instrument(level=Level::TRACE, skip_all,fields(base_path=%base_path,blob.digest=%digest),ret(Display))] fn derive_blob_path(base_path: &Path, digest: &B3Digest) -> Path { base_path .child("blobs") .child("b3") .child(HEXLOWER.encode(&digest.as_slice()[..2])) .child(HEXLOWER.encode(digest.as_slice())) } #[instrument(level=Level::TRACE, skip_all,fields(base_path=%base_path,chunk.digest=%digest),ret(Display))] fn derive_chunk_path(base_path: &Path, digest: &B3Digest) -> Path { base_path .child("chunks") .child("b3") .child(HEXLOWER.encode(&digest.as_slice()[..2])) .child(HEXLOWER.encode(digest.as_slice())) } #[async_trait] impl BlobService for ObjectStoreBlobService { #[instrument(skip_all, ret, err, fields(blob.digest=%digest))] async fn has(&self, digest: &B3Digest) -> io::Result { // TODO: clarify if this should work for chunks or not, and explicitly // document in the proto docs. let p = derive_blob_path(&self.base_path, digest); match self.object_store.head(&p).await { Ok(_) => Ok(true), Err(object_store::Error::NotFound { .. }) => { let p = derive_chunk_path(&self.base_path, digest); match self.object_store.head(&p).await { Ok(_) => Ok(true), Err(object_store::Error::NotFound { .. }) => Ok(false), Err(e) => Err(e)?, } } Err(e) => Err(e)?, } } #[instrument(skip_all, err, fields(blob.digest=%digest))] async fn open_read(&self, digest: &B3Digest) -> io::Result>> { // handle reading the empty blob. if digest.as_slice() == blake3::hash(b"").as_bytes() { return Ok(Some(Box::new(Cursor::new(b"")) as Box)); } match self .object_store .get(&derive_chunk_path(&self.base_path, digest)) .await { Ok(res) => { // handle reading blobs that are small enough to fit inside a single chunk: // fetch the entire chunk into memory, decompress, ensure the b3 digest matches, // and return a io::Cursor over that data. // FUTUREWORK: use zstd::bulk to prevent decompression bombs let chunk_raw_bytes = res.bytes().await?; let chunk_contents = zstd::stream::decode_all(Cursor::new(chunk_raw_bytes))?; if *digest != blake3::hash(&chunk_contents).as_bytes().into() { Err(io::Error::other("chunk contents invalid"))?; } Ok(Some(Box::new(Cursor::new(chunk_contents)))) } Err(object_store::Error::NotFound { .. }) => { // NOTE: For public-facing things, we would want to stop here. // Clients should fetch granularly, so they can make use of // chunks they have locally. // However, if this is used directly, without any caches, do the // assembly here. // This is subject to change, once we have store composition. // TODO: make this configurable, and/or clarify behaviour for // the gRPC server surface (explicitly document behaviour in the // proto docs) if let Some(chunks) = self.chunks(digest).await? { let chunked_reader = ChunkedReader::from_chunks( chunks.into_iter().map(|chunk| { ( chunk.digest.try_into().expect("invalid b3 digest"), chunk.size, ) }), Arc::new(self.clone()) as Arc, ); Ok(Some(Box::new(chunked_reader))) } else { // This is neither a chunk nor a blob, return None. Ok(None) } } Err(e) => Err(e.into()), } } #[instrument(skip_all)] async fn open_write(&self) -> Box { // ObjectStoreBlobWriter implements AsyncWrite, but all the chunking // needs an AsyncRead, so we create a pipe here. // In its `AsyncWrite` implementation, `ObjectStoreBlobWriter` delegates // writes to w. It periodically polls the future that's reading from the // other side. let (w, r) = tokio::io::duplex(self.avg_chunk_size as usize * 10); Box::new(ObjectStoreBlobWriter { writer: Some(w), fut: Some(Box::pin(chunk_and_upload( r, self.object_store.clone(), self.base_path.clone(), self.avg_chunk_size / 2, self.avg_chunk_size, self.avg_chunk_size * 2, ))), fut_output: None, }) } #[instrument(skip_all, err, fields(blob.digest=%digest))] async fn chunks(&self, digest: &B3Digest) -> io::Result>> { match self .object_store .get(&derive_blob_path(&self.base_path, digest)) .await { Ok(get_result) => { // fetch the data at the blob path let blob_data = get_result.bytes().await?; // parse into StatBlobResponse let stat_blob_response: StatBlobResponse = StatBlobResponse::decode(blob_data)?; debug!( chunk.count = stat_blob_response.chunks.len(), blob.size = stat_blob_response .chunks .iter() .map(|x| x.size) .sum::(), "found more granular chunks" ); Ok(Some(stat_blob_response.chunks)) } Err(object_store::Error::NotFound { .. }) => { // If there's only a chunk, we must return the empty vec here, rather than None. match self .object_store .head(&derive_chunk_path(&self.base_path, digest)) .await { Ok(_) => { // present, but no more chunks available debug!("found a single chunk"); Ok(Some(vec![])) } Err(object_store::Error::NotFound { .. }) => { // Neither blob nor single chunk found debug!("not found"); Ok(None) } // error checking for chunk Err(e) => Err(e.into()), } } // error checking for blob Err(err) => Err(err.into()), } } } fn default_avg_chunk_size() -> u32 { 256 * 1024 } #[derive(serde::Deserialize)] #[serde(deny_unknown_fields)] pub struct ObjectStoreBlobServiceConfig { object_store_url: String, #[serde(default = "default_avg_chunk_size")] avg_chunk_size: u32, #[serde(default)] object_store_options: HashMap, } #[async_trait] impl ServiceBuilder for ObjectStoreBlobServiceConfig { type Output = dyn BlobService; async fn build<'a>( &'a self, _instance_name: &str, _context: &CompositionContext, ) -> Result, Box> { let (object_store, path) = object_store::parse_url_opts( &self.object_store_url.parse()?, &self.object_store_options, )?; Ok(Arc::new(ObjectStoreBlobService { object_store: Arc::new(object_store), base_path: path, avg_chunk_size: self.avg_chunk_size, })) } } /// Reads blob contents from a AsyncRead, chunks and uploads them. /// On success, returns a [StatBlobResponse] pointing to the individual chunks. #[instrument(skip_all, fields(base_path=%base_path, min_chunk_size, avg_chunk_size, max_chunk_size), err)] async fn chunk_and_upload( r: R, object_store: Arc, base_path: Path, min_chunk_size: u32, avg_chunk_size: u32, max_chunk_size: u32, ) -> io::Result { // wrap reader with something calculating the blake3 hash of all data read. let mut b3_r = B3HashingReader::from(r); // set up a fastcdc chunker let mut chunker = AsyncStreamCDC::new(&mut b3_r, min_chunk_size, avg_chunk_size, max_chunk_size); /// This really should just belong into the closure at /// `chunker.as_stream().then(|_| { … })``, but if we try to, rustc spits /// higher-ranked lifetime errors at us. async fn fastcdc_chunk_uploader( resp: Result, base_path: Path, object_store: Arc, ) -> std::io::Result { let chunk_data = resp?; let chunk_digest: B3Digest = blake3::hash(&chunk_data.data).as_bytes().into(); let chunk_path = derive_chunk_path(&base_path, &chunk_digest); upload_chunk(object_store, chunk_digest, chunk_path, chunk_data.data).await } // Use the fastcdc chunker to produce a stream of chunks, and upload these // that don't exist to the backend. let chunks = chunker .as_stream() .then(|resp| fastcdc_chunk_uploader(resp, base_path.clone(), object_store.clone())) .collect::>>() .await?; let stat_blob_response = StatBlobResponse { chunks, bao: "".into(), // still todo }; // check for Blob, if it doesn't exist, persist. let blob_digest: B3Digest = b3_r.digest().into(); let blob_path = derive_blob_path(&base_path, &blob_digest); match object_store.head(&blob_path).await { // blob already exists, nothing to do Ok(_) => { trace!( blob.digest = %blob_digest, blob.path = %blob_path, "blob already exists on backend" ); } // chunk does not yet exist, upload first Err(object_store::Error::NotFound { .. }) => { debug!( blob.digest = %blob_digest, blob.path = %blob_path, "uploading blob" ); object_store .put(&blob_path, stat_blob_response.encode_to_vec().into()) .await?; } Err(err) => { // other error Err(err)? } } Ok(blob_digest) } /// upload chunk if it doesn't exist yet. #[instrument(skip_all, fields(chunk.digest = %chunk_digest, chunk.size = chunk_data.len(), chunk.path = %chunk_path), err)] async fn upload_chunk( object_store: Arc, chunk_digest: B3Digest, chunk_path: Path, chunk_data: Vec, ) -> std::io::Result { let chunk_size = chunk_data.len(); match object_store.head(&chunk_path).await { // chunk already exists, nothing to do Ok(_) => { debug!("chunk already exists"); } // chunk does not yet exist, compress and upload. Err(object_store::Error::NotFound { .. }) => { let chunk_data_compressed = zstd::encode_all(Cursor::new(chunk_data), zstd::DEFAULT_COMPRESSION_LEVEL)?; debug!(chunk.compressed_size=%chunk_data_compressed.len(), "uploading chunk"); object_store .as_ref() .put(&chunk_path, chunk_data_compressed.into()) .await?; } // other error Err(err) => Err(err)?, } Ok(ChunkMeta { digest: chunk_digest.into(), size: chunk_size as u64, }) } pin_project! { /// Takes care of blob uploads. /// All writes are relayed to self.writer, and we continuously poll the /// future (which will internally read from the other side of the pipe and /// upload chunks). /// Our BlobWriter::close() needs to drop self.writer, so the other side /// will read EOF and can finalize the blob. /// The future should then resolve and return the blob digest. pub struct ObjectStoreBlobWriter where W: AsyncWrite, Fut: Future, { #[pin] writer: Option, #[pin] fut: Option, fut_output: Option> } } impl tokio::io::AsyncWrite for ObjectStoreBlobWriter where W: AsyncWrite + Send + Unpin, Fut: Future, { fn poll_write( self: std::pin::Pin<&mut Self>, cx: &mut std::task::Context<'_>, buf: &[u8], ) -> std::task::Poll> { let this = self.project(); // poll the future. let fut = this.fut.as_pin_mut().expect("not future"); let fut_p = fut.poll(cx); // if it's ready, the only way this could have happened is that the // upload failed, because we're only closing `self.writer` after all // writes happened. if fut_p.is_ready() { return Poll::Ready(Err(io::Error::other("upload failed"))); } // write to the underlying writer this.writer .as_pin_mut() .expect("writer must be some") .poll_write(cx, buf) } fn poll_flush( self: std::pin::Pin<&mut Self>, cx: &mut std::task::Context<'_>, ) -> std::task::Poll> { let this = self.project(); // poll the future. let fut = this.fut.as_pin_mut().expect("not future"); let fut_p = fut.poll(cx); // if it's ready, the only way this could have happened is that the // upload failed, because we're only closing `self.writer` after all // writes happened. if fut_p.is_ready() { return Poll::Ready(Err(io::Error::other("upload failed"))); } // Call poll_flush on the writer this.writer .as_pin_mut() .expect("writer must be some") .poll_flush(cx) } fn poll_shutdown( self: std::pin::Pin<&mut Self>, _cx: &mut std::task::Context<'_>, ) -> std::task::Poll> { // There's nothing to do on shutdown. We might have written some chunks // that are nowhere else referenced, but cleaning them up here would be racy. std::task::Poll::Ready(Ok(())) } } #[async_trait] impl BlobWriter for ObjectStoreBlobWriter where W: AsyncWrite + Send + Unpin, Fut: Future> + Send + Unpin, { async fn close(&mut self) -> io::Result { match self.writer.take() { Some(mut writer) => { // shut down the writer, so the other side will read EOF. writer.shutdown().await?; // take out the future. let fut = self.fut.take().expect("fut must be some"); // await it. let resp = pin!(fut).await; match resp.as_ref() { // In the case of an Ok value, we store it in self.fut_output, // so future calls to close can return that. Ok(b3_digest) => { self.fut_output = Some(Ok(b3_digest.clone())); } Err(e) => { // for the error type, we need to cheat a bit, as // they're not clone-able. // Simply store a sloppy clone, with the same ErrorKind and message there. self.fut_output = Some(Err(std::io::Error::new(e.kind(), e.to_string()))) } } resp } None => { // called a second time, return self.fut_output. match self.fut_output.as_ref().unwrap() { Ok(ref b3_digest) => Ok(b3_digest.clone()), Err(e) => Err(std::io::Error::new(e.kind(), e.to_string())), } } } } } #[cfg(test)] mod test { use super::chunk_and_upload; use crate::{ blobservice::{BlobService, ObjectStoreBlobService}, fixtures::{BLOB_A, BLOB_A_DIGEST}, }; use std::{io::Cursor, sync::Arc}; use url::Url; /// Tests chunk_and_upload directly, bypassing the BlobWriter at open_write(). #[tokio::test] async fn test_chunk_and_upload() { let blobsvc = Arc::new( ObjectStoreBlobService::parse_url(&Url::parse("memory:///").unwrap()).unwrap(), ); let blob_digest = chunk_and_upload( &mut Cursor::new(BLOB_A.to_vec()), blobsvc.object_store.clone(), object_store::path::Path::from("/"), 1024 / 2, 1024, 1024 * 2, ) .await .expect("chunk_and_upload succeeds"); assert_eq!(BLOB_A_DIGEST.clone(), blob_digest); // Now we should have the blob assert!(blobsvc.has(&BLOB_A_DIGEST).await.unwrap()); } }