// This program reads an export reference graph (i.e. a graph representing the // runtime dependencies of a set of derivations) created by Nix and groups them // in a way that is likely to match the grouping for other derivation sets with // overlapping dependencies. // // This is used to determine which derivations to include in which layers of a // container image. // // # Inputs // // * a graph of Nix runtime dependencies, generated via exportReferenceGraph // * a file containing absolute popularity values of packages in the // Nix package set (in the form of a direct reference count) // * a maximum number of layers to allocate for the image (the "layer budget") // // # Algorithm // // It works by first creating a (directed) dependency tree: // // img (root node) // │ // ├───> A ─────┐ // │ v // ├───> B ───> E // │ ^ // ├───> C ─────┘ // │ │ // │ v // └───> D ───> F // │ // └────> G // // Each node (i.e. package) is then visited to determine how important // it is to separate this node into its own layer, specifically: // // 1. Is the node within a certain threshold percentile of absolute // popularity within all of nixpkgs? (e.g. `glibc`, `openssl`) // // 2. Is the node's runtime closure above a threshold size? (e.g. 100MB) // // In either case, a bit is flipped for this node representing each // condition and an edge to it is inserted directly from the image // root, if it does not already exist. // // For the rest of the example we assume 'G' is above the threshold // size and 'E' is popular. // // This tree is then transformed into a dominator tree: // // img // │ // ├───> A // ├───> B // ├───> C // ├───> E // ├───> D ───> F // └───> G // // Specifically this means that the paths to A, B, C, E, G, and D // always pass through the root (i.e. are dominated by it), whilst F // is dominated by D (all paths go through it). // // The top-level subtrees are considered as the initially selected // layers. // // If the list of layers fits within the layer budget, it is returned. // // Otherwise, a merge rating is calculated for each layer. This is the // product of the layer's total size and its root node's popularity. // // Layers are then merged in ascending order of merge ratings until // they fit into the layer budget. // // # Threshold values // // Threshold values for the partitioning conditions mentioned above // have not yet been determined, but we will make a good first guess // based on gut feeling and proceed to measure their impact on cache // hits/misses. // // # Example // // Using the logic described above as well as the example presented in // the introduction, this program would create the following layer // groupings (assuming no additional partitioning): // // Layer budget: 1 // Layers: { A, B, C, D, E, F, G } // // Layer budget: 2 // Layers: { G }, { A, B, C, D, E, F } // // Layer budget: 3 // Layers: { G }, { E }, { A, B, C, D, F } // // Layer budget: 4 // Layers: { G }, { E }, { D, F }, { A, B, C } // // ... // // Layer budget: 10 // Layers: { E }, { D, F }, { A }, { B }, { C } package layers import ( "encoding/json" "flag" "io/ioutil" "log" "regexp" "sort" "gonum.org/v1/gonum/graph/flow" "gonum.org/v1/gonum/graph/simple" ) // closureGraph represents the structured attributes Nix outputs when asking it // for the exportReferencesGraph of a list of derivations. type exportReferences struct { References struct { Graph []string `json:"graph"` } `json:"exportReferencesGraph"` Graph []struct { Size uint64 `json:"closureSize"` Path string `json:"path"` Refs []string `json:"references"` } `json:"graph"` } // Popularity data for each Nix package that was calculated in advance. // // Popularity is a number from 1-100 that represents the // popularity percentile in which this package resides inside // of the nixpkgs tree. type Popularity = map[string]int // layer represents the data returned for each layer that Nix should // build for the container image. type layer struct { Contents []string `json:"contents"` mergeRating uint64 } func (a layer) merge(b layer) layer { a.Contents = append(a.Contents, b.Contents...) a.mergeRating += b.mergeRating return a } // closure as pointed to by the graph nodes. type closure struct { GraphID int64 Path string Size uint64 Refs []string Popularity int } func (c *closure) ID() int64 { return c.GraphID } var nixRegexp = regexp.MustCompile(`^/nix/store/[a-z0-9]+-`) func (c *closure) DOTID() string { return nixRegexp.ReplaceAllString(c.Path, "") } // bigOrPopular checks whether this closure should be considered for // separation into its own layer, even if it would otherwise only // appear in a subtree of the dominator tree. func (c *closure) bigOrPopular() bool { const sizeThreshold = 100 * 1000000 // 100MB if c.Size > sizeThreshold { return true } // The threshold value used here is currently roughly the // minimum number of references that only 1% of packages in // the entire package set have. // // TODO(tazjin): Do this more elegantly by calculating // percentiles for each package and using those instead. if c.Popularity >= 1000 { return true } return false } func insertEdges(graph *simple.DirectedGraph, cmap *map[string]*closure, node *closure) { // Big or popular nodes get a separate edge from the top to // flag them for their own layer. if node.bigOrPopular() && !graph.HasEdgeFromTo(0, node.ID()) { edge := graph.NewEdge(graph.Node(0), node) graph.SetEdge(edge) } for _, c := range node.Refs { // Nix adds a self reference to each node, which // should not be inserted. if c != node.Path { edge := graph.NewEdge(node, (*cmap)[c]) graph.SetEdge(edge) } } } // Create a graph structure from the references supplied by Nix. func buildGraph(refs *exportReferences, pop *Popularity) *simple.DirectedGraph { cmap := make(map[string]*closure) graph := simple.NewDirectedGraph() // Insert all closures into the graph, as well as a fake root // closure which serves as the top of the tree. // // A map from store paths to IDs is kept to actually insert // edges below. root := &closure{ GraphID: 0, Path: "image_root", } graph.AddNode(root) for idx, c := range refs.Graph { node := &closure{ GraphID: int64(idx + 1), // inc because of root node Path: c.Path, Size: c.Size, Refs: c.Refs, } if p, ok := (*pop)[node.DOTID()]; ok { node.Popularity = p } else { node.Popularity = 1 } graph.AddNode(node) cmap[c.Path] = node } // Insert the top-level closures with edges from the root // node, then insert all edges for each closure. for _, p := range refs.References.Graph { edge := graph.NewEdge(root, cmap[p]) graph.SetEdge(edge) } for _, c := range cmap { insertEdges(graph, &cmap, c) } return graph } // Extracts a subgraph starting at the specified root from the // dominator tree. The subgraph is converted into a flat list of // layers, each containing the store paths and merge rating. func groupLayer(dt *flow.DominatorTree, root *closure) layer { size := root.Size contents := []string{root.Path} children := dt.DominatedBy(root.ID()) // This iteration does not use 'range' because the list being // iterated is modified during the iteration (yes, I'm sorry). for i := 0; i < len(children); i++ { child := children[i].(*closure) size += child.Size contents = append(contents, child.Path) children = append(children, dt.DominatedBy(child.ID())...) } return layer{ Contents: contents, // TODO(tazjin): The point of this is to factor in // both the size and the popularity when making merge // decisions, but there might be a smarter way to do // it than a plain multiplication. mergeRating: uint64(root.Popularity) * size, } } // Calculate the dominator tree of the entire package set and group // each top-level subtree into a layer. // // Layers are merged together until they fit into the layer budget, // based on their merge rating. func dominate(budget int, graph *simple.DirectedGraph) []layer { dt := flow.Dominators(graph.Node(0), graph) var layers []layer for _, n := range dt.DominatedBy(dt.Root().ID()) { layers = append(layers, groupLayer(&dt, n.(*closure))) } sort.Slice(layers, func(i, j int) bool { return layers[i].mergeRating < layers[j].mergeRating }) if len(layers) > budget { log.Printf("Ideal image has %v layers, but budget is %v\n", len(layers), budget) } for len(layers) > budget { merged := layers[0].merge(layers[1]) layers[1] = merged layers = layers[1:] } return layers } func main() { graphFile := flag.String("graph", ".attrs.json", "Input file containing graph") popFile := flag.String("pop", "popularity.json", "Package popularity data") outFile := flag.String("out", "layers.json", "File to write layers to") layerBudget := flag.Int("budget", 94, "Total layer budget available") flag.Parse() // Parse graph data file, err := ioutil.ReadFile(*graphFile) if err != nil { log.Fatalf("Failed to load input: %s\n", err) } var refs exportReferences err = json.Unmarshal(file, &refs) if err != nil { log.Fatalf("Failed to deserialise input: %s\n", err) } // Parse popularity data popBytes, err := ioutil.ReadFile(*popFile) if err != nil { log.Fatalf("Failed to load input: %s\n", err) } var pop Popularity err = json.Unmarshal(popBytes, &pop) if err != nil { log.Fatalf("Failed to deserialise input: %s\n", err) } graph := buildGraph(&refs, &pop) layers := dominate(*layerBudget, graph) j, _ := json.Marshal(layers) ioutil.WriteFile(*outFile, j, 0644) }