// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #ifndef SET_T #error "define the set template to use in SET_T" #include #define SET_T ::immer::set #endif #include "test/dada.hpp" #include "test/util.hpp" #include #include #include #include template auto make_generator() { auto engine = std::default_random_engine{42}; auto dist = std::uniform_int_distribution{}; return std::bind(dist, engine); } struct conflictor { unsigned v1; unsigned v2; bool operator==(const conflictor& x) const { return v1 == x.v1 && v2 == x.v2; } }; struct hash_conflictor { std::size_t operator()(const conflictor& x) const { return x.v1; } }; auto make_values_with_collisions(unsigned n) { auto gen = make_generator(); auto vals = std::vector{}; auto vals_ = std::unordered_set{}; generate_n(back_inserter(vals), n, [&] { auto newv = conflictor{}; do { newv = {unsigned(gen() % (n / 2)), gen()}; } while (!vals_.insert(newv).second); return newv; }); return vals; } auto make_test_set(unsigned n) { auto s = SET_T{}; for (auto i = 0u; i < n; ++i) s = s.insert(i); return s; } auto make_test_set(const std::vector& vals) { auto s = SET_T{}; for (auto&& v : vals) s = s.insert(v); return s; } template struct unaligned_str { std::array m_data{}; unaligned_str() = default; unaligned_str(const std::string& in) { for (std::size_t i = 0; i < std::min(m_data.size() - 1, in.size()); i++) m_data[i] = in[i]; } unaligned_str(const char* in) : unaligned_str{std::string{in}} {} std::string str() const { return m_data.data(); } bool operator==(unaligned_str other) const { return m_data == other.m_data; } bool operator!=(unaligned_str other) const { return m_data != other.m_data; } }; namespace std { template struct hash> { size_t operator()(const unaligned_str& str) const { return std::hash{}(str.str()); } }; } // namespace std template void check_with_len() { auto v = SET_T>{}; for (int i = 0; i < 1; i++) v = v.insert(std::to_string(i)); CHECK(v.count("0") == 1); } TEST_CASE("insert type with no alignment requirement") { check_with_len<1>(); check_with_len<9>(); check_with_len<15>(); check_with_len<17>(); } TEST_CASE("instantiation") { SECTION("default") { auto v = SET_T{}; CHECK(v.size() == 0u); } } TEST_CASE("basic insertion") { auto v1 = SET_T{}; CHECK(v1.count(42) == 0); auto v2 = v1.insert(42); CHECK(v1.count(42) == 0); CHECK(v2.count(42) == 1); auto v3 = v2.insert(42); CHECK(v1.count(42) == 0); CHECK(v2.count(42) == 1); CHECK(v3.count(42) == 1); } TEST_CASE("insert a lot") { constexpr auto N = 666u; auto gen = make_generator(); auto vals = std::vector{}; generate_n(back_inserter(vals), N, gen); auto s = SET_T{}; for (auto i = 0u; i < N; ++i) { s = s.insert(vals[i]); CHECK(s.size() == i + 1); for (auto j : test_irange(0u, i + 1)) CHECK(s.count(vals[j]) == 1); for (auto j : test_irange(i + 1u, N)) CHECK(s.count(vals[j]) == 0); } } TEST_CASE("insert conflicts") { constexpr auto N = 666u; auto vals = make_values_with_collisions(N); auto s = SET_T{}; for (auto i = 0u; i < N; ++i) { s = s.insert(vals[i]); CHECK(s.size() == i + 1); for (auto j : test_irange(0u, i + 1)) CHECK(s.count(vals[j]) == 1); for (auto j : test_irange(i + 1u, N)) CHECK(s.count(vals[j]) == 0); } } TEST_CASE("erase a lot") { constexpr auto N = 666u; auto gen = make_generator(); auto vals = std::vector{}; generate_n(back_inserter(vals), N, gen); auto s = SET_T{}; for (auto i = 0u; i < N; ++i) s = s.insert(vals[i]); for (auto i = 0u; i < N; ++i) { s = s.erase(vals[i]); CHECK(s.size() == N - i - 1); for (auto j : test_irange(0u, i + 1)) CHECK(s.count(vals[j]) == 0); for (auto j : test_irange(i + 1u, N)) CHECK(s.count(vals[j]) == 1); } } TEST_CASE("erase conflicts") { constexpr auto N = 666u; auto vals = make_values_with_collisions(N); auto s = SET_T{}; for (auto i = 0u; i < N; ++i) s = s.insert(vals[i]); for (auto i = 0u; i < N; ++i) { s = s.erase(vals[i]); CHECK(s.size() == N - i - 1); for (auto j : test_irange(0u, i + 1)) CHECK(s.count(vals[j]) == 0); for (auto j : test_irange(i + 1u, N)) CHECK(s.count(vals[j]) == 1); } } TEST_CASE("accumulate") { const auto n = 666u; auto v = make_test_set(n); auto expected_n = [](auto n) { return n * (n - 1) / 2; }; SECTION("sum collection") { auto sum = immer::accumulate(v, 0u); CHECK(sum == expected_n(v.size())); } SECTION("sum collisions") { auto vals = make_values_with_collisions(n); auto s = make_test_set(vals); auto acc = [](unsigned r, conflictor x) { return r + x.v1 + x.v2; }; auto sum1 = std::accumulate(vals.begin(), vals.end(), 0, acc); auto sum2 = immer::accumulate(s, 0u, acc); CHECK(sum1 == sum2); } } TEST_CASE("find") { const auto n = 666u; auto v = make_test_set(n); CHECK(*v.find(0) == 0); CHECK(*v.find(42) == 42); CHECK(*v.find(665) == 665); CHECK(v.find(666) == nullptr); CHECK(v.find(1234) == nullptr); } TEST_CASE("iterator") { const auto N = 666u; auto v = make_test_set(N); SECTION("empty set") { auto s = SET_T{}; CHECK(s.begin() == s.end()); } SECTION("works with range loop") { auto seen = std::unordered_set{}; for (const auto& x : v) CHECK(seen.insert(x).second); CHECK(seen.size() == v.size()); } SECTION("works with standard algorithms") { auto s = std::vector(N); std::iota(s.begin(), s.end(), 0u); std::equal(v.begin(), v.end(), s.begin(), s.end()); } SECTION("iterator and collisions") { auto vals = make_values_with_collisions(N); auto s = make_test_set(vals); auto seen = std::unordered_set{}; for (const auto& x : s) CHECK(seen.insert(x).second); CHECK(seen.size() == s.size()); } } struct non_default { unsigned value; non_default() = delete; operator unsigned() const { return value; } #if IMMER_DEBUG_PRINT friend std::ostream& operator<<(std::ostream& os, non_default x) { os << "ND{" << x.value << "}"; return os; } #endif }; namespace std { template <> struct hash { std::size_t operator()(const non_default& x) { return std::hash{}(x.value); } }; } // namespace std TEST_CASE("non default") { const auto n = 666u; auto v = SET_T{}; for (auto i = 0u; i < n; ++i) v = v.insert({i}); CHECK(v.size() == n); } TEST_CASE("equals") { const auto n = 666u; auto v = make_test_set(n); CHECK(v == v); CHECK(v != v.insert(1234)); CHECK(v == v.erase(1234)); CHECK(v == v.insert(1234).erase(1234)); CHECK(v == v.erase(64).insert(64)); CHECK(v != v.erase(1234).insert(1234)); } TEST_CASE("equals collisions") { const auto n = 666u; auto vals = make_values_with_collisions(n); auto v = make_test_set(vals); CHECK(v == v); CHECK(v != v.erase(vals[42])); CHECK(v == v.erase(vals[42]).insert(vals[42])); CHECK(v == v.erase(vals[42]).erase(vals[13]).insert(vals[42]).insert(vals[13])); CHECK(v == v.erase(vals[42]).erase(vals[13]).insert(vals[13]).insert(vals[42])); } TEST_CASE("exception safety") { constexpr auto n = 2666u; using dadaist_set_t = typename dadaist_wrapper>::type; using dadaist_conflictor_set_t = typename dadaist_wrapper>::type; SECTION("insert") { auto v = dadaist_set_t{}; auto d = dadaism{}; for (auto i = 0u; v.size() < n;) { try { auto s = d.next(); v = v.insert({i}); ++i; } catch (dada_error) {} for (auto i : test_irange(0u, i)) CHECK(v.count({i}) == 1); } CHECK(d.happenings > 0); IMMER_TRACE_E(d.happenings); } SECTION("insert collisions") { auto vals = make_values_with_collisions(n); auto v = dadaist_conflictor_set_t{}; auto d = dadaism{}; for (auto i = 0u; v.size() < n;) { try { auto s = d.next(); v = v.insert({vals[i]}); ++i; } catch (dada_error) {} for (auto i : test_irange(0u, i)) CHECK(v.count({vals[i]}) == 1); } CHECK(d.happenings > 0); IMMER_TRACE_E(d.happenings); } SECTION("erase") { auto v = dadaist_set_t{}; auto d = dadaism{}; for (auto i = 0u; i < n; ++i) v = v.insert({i}); for (auto i = 0u; v.size() > 0;) { try { auto s = d.next(); v = v.erase({i}); ++i; } catch (dada_error) {} for (auto i : test_irange(0u, i)) CHECK(v.count({i}) == 0); for (auto i : test_irange(i, n)) CHECK(v.count({i}) == 1); } CHECK(d.happenings > 0); IMMER_TRACE_E(d.happenings); } SECTION("erase collisisions") { auto vals = make_values_with_collisions(n); auto v = dadaist_conflictor_set_t{}; auto d = dadaism{}; for (auto i = 0u; i < n; ++i) v = v.insert({vals[i]}); for (auto i = 0u; v.size() > 0;) { try { auto s = d.next(); v = v.erase({vals[i]}); ++i; } catch (dada_error) {} for (auto i : test_irange(0u, i)) CHECK(v.count({vals[i]}) == 0); for (auto i : test_irange(i, n)) CHECK(v.count({vals[i]}) == 1); } CHECK(d.happenings > 0); IMMER_TRACE_E(d.happenings); } }