// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #ifndef MAP_T #error "define the map template to use in MAP_T" #include #define MAP_T ::immer::map #endif #include #include "test/dada.hpp" #include "test/util.hpp" #include #include #include template auto make_generator() { auto engine = std::default_random_engine{42}; auto dist = std::uniform_int_distribution{}; return std::bind(dist, engine); } struct conflictor { unsigned v1; unsigned v2; bool operator==(const conflictor& x) const { return v1 == x.v1 && v2 == x.v2; } }; struct hash_conflictor { std::size_t operator()(const conflictor& x) const { return x.v1; } }; auto make_values_with_collisions(unsigned n) { auto gen = make_generator(); auto vals = std::vector>{}; auto vals_ = std::unordered_set{}; auto i = 0u; generate_n(back_inserter(vals), n, [&] { auto newv = conflictor{}; do { newv = {unsigned(gen() % (n / 2)), gen()}; } while (!vals_.insert(newv).second); return std::pair{newv, i++}; }); return vals; } auto make_test_map(unsigned n) { auto s = MAP_T{}; for (auto i = 0u; i < n; ++i) s = s.insert({i, i}); return s; } auto make_test_map(const std::vector>& vals) { auto s = MAP_T{}; for (auto&& v : vals) s = s.insert(v); return s; } TEST_CASE("instantiation") { SECTION("default") { auto v = MAP_T{}; CHECK(v.size() == 0u); } } TEST_CASE("basic insertion") { auto v1 = MAP_T{}; CHECK(v1.count(42) == 0); auto v2 = v1.insert({42, {}}); CHECK(v1.count(42) == 0); CHECK(v2.count(42) == 1); auto v3 = v2.insert({42, {}}); CHECK(v1.count(42) == 0); CHECK(v2.count(42) == 1); CHECK(v3.count(42) == 1); } TEST_CASE("accessor") { const auto n = 666u; auto v = make_test_map(n); CHECK(v[0] == 0); CHECK(v[42] == 42); CHECK(v[665] == 665); CHECK(v[666] == 0); CHECK(v[1234] == 0); } TEST_CASE("at") { const auto n = 666u; auto v = make_test_map(n); CHECK(v.at(0) == 0); CHECK(v.at(42) == 42); CHECK(v.at(665) == 665); CHECK_THROWS_AS(v.at(666), std::out_of_range&); CHECK_THROWS_AS(v.at(1234), std::out_of_range&); } TEST_CASE("find") { const auto n = 666u; auto v = make_test_map(n); CHECK(*v.find(0) == 0); CHECK(*v.find(42) == 42); CHECK(*v.find(665) == 665); CHECK(v.find(666) == nullptr); CHECK(v.find(1234) == nullptr); } TEST_CASE("equals and setting") { const auto n = 666u; auto v = make_test_map(n); CHECK(v == v); CHECK(v != v.insert({1234, 42})); CHECK(v != v.erase(32)); CHECK(v == v.insert({1234, 42}).erase(1234)); CHECK(v == v.erase(32).insert({32, 32})); CHECK(v.set(1234, 42) == v.insert({1234, 42})); CHECK(v.update(1234, [](auto&& x) { return x + 1; }) == v.set(1234, 1)); CHECK(v.update(42, [](auto&& x) { return x + 1; }) == v.set(42, 43)); } TEST_CASE("iterator") { const auto N = 666u; auto v = make_test_map(N); SECTION("empty set") { auto s = MAP_T{}; CHECK(s.begin() == s.end()); } SECTION("works with range loop") { auto seen = std::unordered_set{}; for (const auto& x : v) CHECK(seen.insert(x.first).second); CHECK(seen.size() == v.size()); } SECTION("iterator and collisions") { auto vals = make_values_with_collisions(N); auto s = make_test_map(vals); auto seen = std::unordered_set{}; for (const auto& x : s) CHECK(seen.insert(x.first).second); CHECK(seen.size() == s.size()); } } TEST_CASE("accumulate") { const auto n = 666u; auto v = make_test_map(n); auto expected_n = [](auto n) { return n * (n - 1) / 2; }; SECTION("sum collection") { auto acc = [](unsigned acc, const std::pair& x) { return acc + x.first + x.second; }; auto sum = immer::accumulate(v, 0u, acc); CHECK(sum == 2 * expected_n(v.size())); } SECTION("sum collisions") { auto vals = make_values_with_collisions(n); auto s = make_test_map(vals); auto acc = [](unsigned r, std::pair x) { return r + x.first.v1 + x.first.v2 + x.second; }; auto sum1 = std::accumulate(vals.begin(), vals.end(), 0u, acc); auto sum2 = immer::accumulate(s, 0u, acc); CHECK(sum1 == sum2); } } TEST_CASE("update a lot") { auto v = make_test_map(666u); for (decltype(v.size()) i = 0; i < v.size(); ++i) { v = v.update(i, [](auto&& x) { return x + 1; }); CHECK(v[i] == i + 1); } } TEST_CASE("exception safety") { constexpr auto n = 2666u; using dadaist_map_t = typename dadaist_wrapper>::type; using dadaist_conflictor_map_t = typename dadaist_wrapper< MAP_T>::type; SECTION("update collisions") { auto v = dadaist_map_t{}; auto d = dadaism{}; for (auto i = 0u; i < n; ++i) v = v.set(i, i); for (auto i = 0u; i < v.size();) { try { auto s = d.next(); v = v.update(i, [](auto x) { return x + 1; }); ++i; } catch (dada_error) {} for (auto i : test_irange(0u, i)) CHECK(v.at(i) == i + 1); for (auto i : test_irange(i, n)) CHECK(v.at(i) == i); } CHECK(d.happenings > 0); IMMER_TRACE_E(d.happenings); } SECTION("update collisisions") { auto vals = make_values_with_collisions(n); auto v = dadaist_conflictor_map_t{}; auto d = dadaism{}; for (auto i = 0u; i < n; ++i) v = v.insert(vals[i]); for (auto i = 0u; i < v.size();) { try { auto s = d.next(); v = v.update(vals[i].first, [](auto x) { return x + 1; }); ++i; } catch (dada_error) {} for (auto i : test_irange(0u, i)) CHECK(v.at(vals[i].first) == vals[i].second + 1); for (auto i : test_irange(i, n)) CHECK(v.at(vals[i].first) == vals[i].second); } CHECK(d.happenings > 0); IMMER_TRACE_E(d.happenings); } } namespace { class KElem { public: KElem(int* elem) { this->elem = elem; } bool operator==(const KElem& other) const { return this->elem == other.elem; } bool operator!=(const KElem& other) const { return !(*this == other); } int* elem; }; struct HashBlock { size_t operator()(const KElem& block) const noexcept { return (uintptr_t) block.elem & 0xffffffff00000000; } }; using map = immer::map>; TEST_CASE("issue 134") { int a[100]; map m; for (int i = 0; i < 100; i++) { m = m.set(KElem(a + i), KElem(a + i)); } } } // namespace