// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #pragma once #include #include #include namespace immer { template class flex_vector; template class vector_transient; /*! * Mutable version of `immer::flex_vector`. * * @rst * * Refer to :doc:`transients` to learn more about when and how to use * the mutable versions of immutable containers. * * @endrst */ template > class flex_vector_transient : MemoryPolicy::transience_t::owner { using impl_t = detail::rbts::rrbtree; using base_t = typename MemoryPolicy::transience_t::owner; using owner_t = typename MemoryPolicy::transience_t::owner; public: static constexpr auto bits = B; static constexpr auto bits_leaf = BL; using memory_policy = MemoryPolicy; using value_type = T; using reference = const T&; using size_type = detail::rbts::size_t; using difference_type = std::ptrdiff_t; using const_reference = const T&; using iterator = detail::rbts::rrbtree_iterator; using const_iterator = iterator; using reverse_iterator = std::reverse_iterator; using persistent_type = flex_vector; /*! * Default constructor. It creates a flex_vector of `size() == 0`. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ flex_vector_transient() = default; /*! * Default constructor. It creates a flex_vector with the same * contents as `v`. It does not allocate memory and is * @f$ O(1) @f$. */ flex_vector_transient(vector_transient v) : base_t{std::move(static_cast(v))} , impl_{v.impl_.size, v.impl_.shift, v.impl_.root->inc(), v.impl_.tail->inc()} {} /*! * Returns an iterator pointing at the first element of the * collection. It does not allocate memory and its complexity is * @f$ O(1) @f$. */ IMMER_NODISCARD iterator begin() const { return {impl_}; } /*! * Returns an iterator pointing just after the last element of the * collection. It does not allocate and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD iterator end() const { return {impl_, typename iterator::end_t{}}; } /*! * Returns an iterator that traverses the collection backwards, * pointing at the first element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rbegin() const { return reverse_iterator{end()}; } /*! * Returns an iterator that traverses the collection backwards, * pointing after the last element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rend() const { return reverse_iterator{begin()}; } /*! * Returns the number of elements in the container. It does * not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD size_type size() const { return impl_.size; } /*! * Returns `true` if there are no elements in the container. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD bool empty() const { return impl_.size == 0; } /*! * Returns a `const` reference to the element at position `index`. * It is undefined when @f$ 0 index \geq size() @f$. It does not * allocate memory and its complexity is *effectively* @f$ O(1) * @f$. */ reference operator[](size_type index) const { return impl_.get(index); } /*! * Returns a `const` reference to the element at position * `index`. It throws an `std::out_of_range` exception when @f$ * index \geq size() @f$. It does not allocate memory and its * complexity is *effectively* @f$ O(1) @f$. */ reference at(size_type index) const { return impl_.get_check(index); } /*! * Inserts `value` at the end. It may allocate memory and its * complexity is *effectively* @f$ O(1) @f$. */ void push_back(value_type value) { impl_.push_back_mut(*this, std::move(value)); } /*! * Sets to the value `value` at position `idx`. * Undefined for `index >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. */ void set(size_type index, value_type value) { impl_.assoc_mut(*this, index, std::move(value)); } /*! * Updates the vector to contain the result of the expression * `fn((*this)[idx])` at position `idx`. * Undefined for `0 >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. */ template void update(size_type index, FnT&& fn) { impl_.update_mut(*this, index, std::forward(fn)); } /*! * Resizes the vector to only contain the first `min(elems, size())` * elements. It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. */ void take(size_type elems) { impl_.take_mut(*this, elems); } /*! * Removes the first the first `min(elems, size())` * elements. It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. */ void drop(size_type elems) { impl_.drop_mut(*this, elems); } /*! * Appends the contents of the `r` at the end. It may allocate * memory and its complexity is: * @f$ O(log(max(size_r, size_l))) @f$ */ void append(flex_vector_transient& r) { r.owner_t::operator=(owner_t{}); concat_mut_l(impl_, *this, r.impl_); } void append(flex_vector_transient&& r) { concat_mut_lr_l(impl_, *this, r.impl_, r); } /*! * Prepends the contents of the `l` at the beginning. It may * allocate memory and its complexity is: * @f$ O(log(max(size_r, size_l))) @f$ */ void prepend(flex_vector_transient& l) { l.owner_t::operator=(owner_t{}); concat_mut_r(l.impl_, impl_, *this); } void prepend(flex_vector_transient&& l) { concat_mut_lr_r(l.impl_, l, impl_, *this); } /*! * Returns an @a immutable form of this container, an * `immer::flex_vector`. */ IMMER_NODISCARD persistent_type persistent() & { this->owner_t::operator=(owner_t{}); return persistent_type{impl_}; } IMMER_NODISCARD persistent_type persistent() && { return persistent_type{std::move(impl_)}; } private: friend persistent_type; flex_vector_transient(impl_t impl) : impl_(std::move(impl)) {} impl_t impl_ = impl_t::empty(); }; } // namespace immer