// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #pragma once #include #include namespace immer { template class array_transient; /*! * Immutable container that stores a sequence of elements in * contiguous memory. * * @tparam T The type of the values to be stored in the container. * * @rst * * It supports the most efficient iteration and random access, * equivalent to a ``std::vector`` or ``std::array``, but all * manipulations are :math:`O(size)`. * * .. tip:: Don't be fooled by the bad complexity of this data * structure. It is a great choice for short sequence or when it * is seldom or never changed. This depends on the ``sizeof(T)`` * and the expensiveness of its ``T``'s copy constructor, in case * of doubt, measure. For basic types, using an `array` when * :math:`n < 100` is a good heuristic. * * @endrst */ template class array { using impl_t = std::conditional_t, detail::arrays::no_capacity>; using move_t = std::integral_constant; public: using value_type = T; using reference = const T&; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using const_reference = const T&; using iterator = const T*; using const_iterator = iterator; using reverse_iterator = std::reverse_iterator; using memory_policy = MemoryPolicy; using transient_type = array_transient; /*! * Default constructor. It creates an array of `size() == 0`. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ array() = default; /*! * Constructs an array containing the elements in `values`. */ array(std::initializer_list values) : impl_{impl_t::from_initializer_list(values)} {} /*! * Constructs a array containing the elements in the range * defined by the forward iterator `first` and range sentinel `last`. */ template && detail::is_forward_iterator_v, bool> = true> array(Iter first, Sent last) : impl_{impl_t::from_range(first, last)} {} /*! * Constructs a array containing the element `val` repeated `n` * times. */ array(size_type n, T v = {}) : impl_{impl_t::from_fill(n, v)} {} /*! * Returns an iterator pointing at the first element of the * collection. It does not allocate memory and its complexity is * @f$ O(1) @f$. */ IMMER_NODISCARD iterator begin() const { return impl_.data(); } /*! * Returns an iterator pointing just after the last element of the * collection. It does not allocate and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD iterator end() const { return impl_.data() + impl_.size; } /*! * Returns an iterator that traverses the collection backwards, * pointing at the first element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rbegin() const { return reverse_iterator{end()}; } /*! * Returns an iterator that traverses the collection backwards, * pointing after the last element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rend() const { return reverse_iterator{begin()}; } /*! * Returns the number of elements in the container. It does * not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD std::size_t size() const { return impl_.size; } /*! * Returns `true` if there are no elements in the container. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD bool empty() const { return impl_.size == 0; } /*! * Access the raw data. */ IMMER_NODISCARD const T* data() const { return impl_.data(); } /*! * Access the last element. */ IMMER_NODISCARD const T& back() const { return data()[size() - 1]; } /*! * Access the first element. */ IMMER_NODISCARD const T& front() const { return data()[0]; } /*! * Returns a `const` reference to the element at position `index`. * It is undefined when @f$ 0 index \geq size() @f$. It does not * allocate memory and its complexity is *effectively* @f$ O(1) * @f$. */ IMMER_NODISCARD reference operator[](size_type index) const { return impl_.get(index); } /*! * Returns a `const` reference to the element at position * `index`. It throws an `std::out_of_range` exception when @f$ * index \geq size() @f$. It does not allocate memory and its * complexity is *effectively* @f$ O(1) @f$. */ reference at(size_type index) const { return impl_.get_check(index); } /*! * Returns whether the vectors are equal. */ IMMER_NODISCARD bool operator==(const array& other) const { return impl_.equals(other.impl_); } IMMER_NODISCARD bool operator!=(const array& other) const { return !(*this == other); } /*! * Returns an array with `value` inserted at the end. It may * allocate memory and its complexity is @f$ O(size) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/array/array.cpp * :language: c++ * :dedent: 8 * :start-after: push-back/start * :end-before: push-back/end * * @endrst */ IMMER_NODISCARD array push_back(value_type value) const& { return impl_.push_back(std::move(value)); } IMMER_NODISCARD decltype(auto) push_back(value_type value) && { return push_back_move(move_t{}, std::move(value)); } /*! * Returns an array containing value `value` at position `idx`. * Undefined for `index >= size()`. * It may allocate memory and its complexity is @f$ O(size) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/array/array.cpp * :language: c++ * :dedent: 8 * :start-after: set/start * :end-before: set/end * * @endrst */ IMMER_NODISCARD array set(std::size_t index, value_type value) const& { return impl_.assoc(index, std::move(value)); } IMMER_NODISCARD decltype(auto) set(size_type index, value_type value) && { return set_move(move_t{}, index, std::move(value)); } /*! * Returns an array containing the result of the expression * `fn((*this)[idx])` at position `idx`. * Undefined for `index >= size()`. * It may allocate memory and its complexity is @f$ O(size) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/array/array.cpp * :language: c++ * :dedent: 8 * :start-after: update/start * :end-before: update/end * * @endrst */ template IMMER_NODISCARD array update(std::size_t index, FnT&& fn) const& { return impl_.update(index, std::forward(fn)); } template IMMER_NODISCARD decltype(auto) update(size_type index, FnT&& fn) && { return update_move(move_t{}, index, std::forward(fn)); } /*! * Returns a array containing only the first `min(elems, size())` * elements. It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/array/array.cpp * :language: c++ * :dedent: 8 * :start-after: take/start * :end-before: take/end * * @endrst */ IMMER_NODISCARD array take(size_type elems) const& { return impl_.take(elems); } IMMER_NODISCARD decltype(auto) take(size_type elems) && { return take_move(move_t{}, elems); } /*! * Returns an @a transient form of this container, an * `immer::array_transient`. */ IMMER_NODISCARD transient_type transient() const& { return transient_type{impl_}; } IMMER_NODISCARD transient_type transient() && { return transient_type{std::move(impl_)}; } // Semi-private const impl_t& impl() const { return impl_; } private: friend transient_type; array(impl_t impl) : impl_(std::move(impl)) {} array&& push_back_move(std::true_type, value_type value) { impl_.push_back_mut({}, std::move(value)); return std::move(*this); } array push_back_move(std::false_type, value_type value) { return impl_.push_back(std::move(value)); } array&& set_move(std::true_type, size_type index, value_type value) { impl_.assoc_mut({}, index, std::move(value)); return std::move(*this); } array set_move(std::false_type, size_type index, value_type value) { return impl_.assoc(index, std::move(value)); } template array&& update_move(std::true_type, size_type index, Fn&& fn) { impl_.update_mut({}, index, std::forward(fn)); return std::move(*this); } template array update_move(std::false_type, size_type index, Fn&& fn) { return impl_.update(index, std::forward(fn)); } array&& take_move(std::true_type, size_type elems) { impl_.take_mut({}, elems); return std::move(*this); } array take_move(std::false_type, size_type elems) { return impl_.take(elems); } impl_t impl_ = impl_t::empty(); }; } /* namespace immer */