#include <map> #include "normalise.hh" #include "references.hh" #include "db.hh" #include "exec.hh" #include "pathlocks.hh" #include "globals.hh" void registerSuccessor(const Transaction & txn, const FSId & id1, const FSId & id2) { nixDB.setString(txn, dbSuccessors, id1, id2); } static FSId useSuccessor(const FSId & id) { string idSucc; if (nixDB.queryString(noTxn, dbSuccessors, id, idSucc)) { debug(format("successor %1% -> %2%") % (string) id % idSucc); return parseHash(idSucc); } else return id; } typedef map<string, FSId> OutPaths; typedef map<string, SliceElem> ElemMap; Strings pathsFromOutPaths(const OutPaths & ps) { Strings ss; for (OutPaths::const_iterator i = ps.begin(); i != ps.end(); i++) ss.push_back(i->first); return ss; } FSId normaliseFState(FSId id, FSIdSet pending) { Nest nest(lvlTalkative, format("normalising fstate %1%") % (string) id); /* Try to substitute $id$ by any known successors in order to speed up the rewrite process. */ id = useSuccessor(id); /* Get the fstate expression. */ FState fs = parseFState(termFromId(id)); /* If this is a normal form (i.e., a slice) we are done. */ if (fs.type == FState::fsSlice) return id; if (fs.type != FState::fsDerive) abort(); /* Otherwise, it's a derive expression, and we have to build it to determine its normal form. */ /* Some variables. */ /* Output paths, with their ids. */ OutPaths outPaths; /* Input paths, with their slice elements. */ ElemMap inMap; /* Referencable paths (i.e., input and output paths). */ Strings allPaths; /* The environment to be passed to the builder. */ Environment env; /* Parse the outputs. */ for (DeriveOutputs::iterator i = fs.derive.outputs.begin(); i != fs.derive.outputs.end(); i++) { debug(format("building %1% in `%2%'") % (string) i->second % i->first); outPaths[i->first] = i->second; allPaths.push_back(i->first); } /* Obtain locks on all output paths. The locks are automatically released when we exit this function or Nix crashes. */ PathLocks outputLocks(pathsFromOutPaths(outPaths)); /* Now check again whether there is a successor. This is because another process may have started building in parallel. After it has finished and released the locks, we can (and should) reuse its results. (Strictly speaking the first successor check above can be omitted, but that would be less efficient.) Note that since we now hold the locks on the output paths, no other process can build this expression, so no further checks are necessary. */ { FSId id2 = useSuccessor(id); if (id2 != id) { FState fs = parseFState(termFromId(id2)); debug(format("skipping build of %1%, someone beat us to it") % (string) id); if (fs.type != FState::fsSlice) abort(); return id2; } } /* Right platform? */ if (fs.derive.platform != thisSystem) throw Error(format("a `%1%' is required, but I am a `%2%'") % fs.derive.platform % thisSystem); /* Realise inputs (and remember all input paths). */ for (FSIds::iterator i = fs.derive.inputs.begin(); i != fs.derive.inputs.end(); i++) { FSId nf = normaliseFState(*i, pending); realiseSlice(nf, pending); /* !!! nf should be a root of the garbage collector while we are building */ FState fs = parseFState(termFromId(nf)); if (fs.type != FState::fsSlice) abort(); for (SliceElems::iterator j = fs.slice.elems.begin(); j != fs.slice.elems.end(); j++) inMap[j->path] = *j; } for (ElemMap::iterator i = inMap.begin(); i != inMap.end(); i++) allPaths.push_back(i->second.path); /* Most shells initialise PATH to some default (/bin:/usr/bin:...) when PATH is not set. We don't want this, so we fill it in with some dummy value. */ env["PATH"] = "/path-not-set"; /* Build the environment. */ for (StringPairs::iterator i = fs.derive.env.begin(); i != fs.derive.env.end(); i++) env[i->first] = i->second; /* We can skip running the builder if we can expand all output paths from their ids. */ bool fastBuild = true; for (OutPaths::iterator i = outPaths.begin(); i != outPaths.end(); i++) { try { expandId(i->second, i->first, "/", pending); } catch (Error & e) { debug(format("fast build failed for `%1%': %2%") % i->first % e.what()); fastBuild = false; break; } } if (!fastBuild) { /* If any of the outputs already exist but are not registered, delete them. */ for (OutPaths::iterator i = outPaths.begin(); i != outPaths.end(); i++) { string path = i->first; FSId id; if (queryPathId(path, id)) throw Error(format("obstructed build: path `%1%' exists") % path); if (pathExists(path)) { debug(format("removing unregistered path `%1%'") % path); deletePath(path); } } /* Run the builder. */ msg(lvlChatty, format("building...")); runProgram(fs.derive.builder, fs.derive.args, env); msg(lvlChatty, format("build completed")); } else msg(lvlChatty, format("fast build succesful")); /* Check whether the output paths were created, and grep each output path to determine what other paths it references. */ StringSet usedPaths; for (OutPaths::iterator i = outPaths.begin(); i != outPaths.end(); i++) { string path = i->first; if (!pathExists(path)) throw Error(format("path `%1%' does not exist") % path); fs.slice.roots.push_back(path); /* For this output path, find the references to other paths contained in it. */ Strings refPaths = filterReferences(path, allPaths); /* Construct a slice element for this output path. */ SliceElem elem; elem.path = path; elem.id = i->second; /* For each path referenced by this output path, add its id to the slice element and add the id to the `usedPaths' set (so that the elements referenced by *its* slice are added below). */ for (Strings::iterator j = refPaths.begin(); j != refPaths.end(); j++) { string path = *j; ElemMap::iterator k; OutPaths::iterator l; elem.refs.push_back(path); if ((k = inMap.find(path)) != inMap.end()) usedPaths.insert(k->second.path); else if ((l = outPaths.find(path)) == outPaths.end()) abort(); } fs.slice.elems.push_back(elem); } /* Close the slice. That is, for any referenced path, add the paths referenced by it. */ StringSet donePaths; while (!usedPaths.empty()) { StringSet::iterator i = usedPaths.begin(); string path = *i; usedPaths.erase(i); if (donePaths.find(path) != donePaths.end()) continue; donePaths.insert(path); ElemMap::iterator j = inMap.find(path); if (j == inMap.end()) abort(); fs.slice.elems.push_back(j->second); for (Strings::iterator k = j->second.refs.begin(); k != j->second.refs.end(); k++) usedPaths.insert(*k); } /* For debugging, print out the referenced and unreferenced paths. */ for (ElemMap::iterator i = inMap.begin(); i != inMap.end(); i++) { StringSet::iterator j = donePaths.find(i->second.path); if (j == donePaths.end()) debug(format("NOT referenced: `%1%'") % i->second.path); else debug(format("referenced: `%1%'") % i->second.path); } /* Write the normal form. This does not have to occur in the transaction below because writing terms is idem-potent. */ fs.type = FState::fsSlice; ATerm nf = unparseFState(fs); msg(lvlVomit, format("normal form: %1%") % printTerm(nf)); FSId idNF = writeTerm(nf, "-s-" + (string) id); /* Register each outpat path, and register the normal form. This is wrapped in one database transaction to ensure that if we crash, either everything is registered or nothing is. This is for recoverability: unregistered paths in the store can be deleted arbitrarily, while registered paths can only be deleted by running the garbage collector. */ Transaction txn(nixDB); for (OutPaths::iterator i = outPaths.begin(); i != outPaths.end(); i++) registerPath(txn, i->first, i->second); registerSuccessor(txn, id, idNF); txn.commit(); return idNF; } void realiseSlice(const FSId & id, FSIdSet pending) { Nest nest(lvlDebug, format("realising slice %1%") % (string) id); FState fs = parseFState(termFromId(id)); if (fs.type != FState::fsSlice) throw Error(format("expected slice in %1%") % (string) id); for (SliceElems::const_iterator i = fs.slice.elems.begin(); i != fs.slice.elems.end(); i++) { SliceElem elem = *i; expandId(elem.id, elem.path, "/", pending); } } Strings fstatePaths(const FSId & id) { Strings paths; FState fs = parseFState(termFromId(id)); if (fs.type == FState::fsSlice) { /* !!! fix complexity */ for (Strings::const_iterator i = fs.slice.roots.begin(); i != fs.slice.roots.end(); i++) for (SliceElems::const_iterator j = fs.slice.elems.begin(); j != fs.slice.elems.end(); j++) if (*i == j->path) paths.push_back(j->path); } else if (fs.type == FState::fsDerive) { for (DeriveOutputs::iterator i = fs.derive.outputs.begin(); i != fs.derive.outputs.end(); i++) paths.push_back(i->first); } else abort(); return paths; } static void fstateRequisitesSet(const FSId & id, bool includeExprs, bool includeSuccessors, StringSet & paths) { FState fs = parseFState(termFromId(id)); if (fs.type == FState::fsSlice) { for (SliceElems::iterator i = fs.slice.elems.begin(); i != fs.slice.elems.end(); i++) paths.insert(i->path); } else if (fs.type == FState::fsDerive) { for (FSIds::iterator i = fs.derive.inputs.begin(); i != fs.derive.inputs.end(); i++) fstateRequisitesSet(*i, includeExprs, includeSuccessors, paths); } else abort(); if (includeExprs) paths.insert(expandId(id)); string idSucc; if (includeSuccessors && nixDB.queryString(noTxn, dbSuccessors, id, idSucc)) fstateRequisitesSet(parseHash(idSucc), includeExprs, includeSuccessors, paths); } Strings fstateRequisites(const FSId & id, bool includeExprs, bool includeSuccessors) { StringSet paths; fstateRequisitesSet(id, includeExprs, includeSuccessors, paths); return Strings(paths.begin(), paths.end()); } FSIds findGenerators(const FSIds & _ids) { FSIdSet ids(_ids.begin(), _ids.end()); FSIds generators; /* !!! hack; for performance, we just look at the rhs of successor mappings, since we know that those are Nix expressions. */ Strings sucs; nixDB.enumTable(noTxn, dbSuccessors, sucs); for (Strings::iterator i = sucs.begin(); i != sucs.end(); i++) { string s; if (!nixDB.queryString(noTxn, dbSuccessors, *i, s)) continue; FSId id = parseHash(s); FState fs; try { /* !!! should substitutes be used? */ fs = parseFState(termFromId(id)); } catch (...) { /* !!! only catch parse errors */ continue; } if (fs.type != FState::fsSlice) continue; bool okay = true; for (SliceElems::const_iterator i = fs.slice.elems.begin(); i != fs.slice.elems.end(); i++) if (ids.find(i->id) == ids.end()) { okay = false; break; } if (!okay) continue; generators.push_back(id); } return generators; }