/* linenoise.c -- guerrilla line editing library against the idea that a * line editing lib needs to be 20,000 lines of C code. * * Copyright (c) 2010, Salvatore Sanfilippo * Copyright (c) 2010, Pieter Noordhuis * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * line editing lib needs to be 20,000 lines of C code. * * You can find the latest source code at: * * http://github.com/antirez/linenoise * * Does a number of crazy assumptions that happen to be true in 99.9999% of * the 2010 UNIX computers around. * * References: * - http://invisible-island.net/xterm/ctlseqs/ctlseqs.html * - http://www.3waylabs.com/nw/WWW/products/wizcon/vt220.html * * Todo list: * - Switch to gets() if $TERM is something we can't support. * - Filter bogus Ctrl+ combinations. * - Win32 support * * Bloat: * - Completion? * - History search like Ctrl+r in readline? * * List of escape sequences used by this program, we do everything just * with three sequences. In order to be so cheap we may have some * flickering effect with some slow terminal, but the lesser sequences * the more compatible. * * CHA (Cursor Horizontal Absolute) * Sequence: ESC [ n G * Effect: moves cursor to column n (1 based) * * EL (Erase Line) * Sequence: ESC [ n K * Effect: if n is 0 or missing, clear from cursor to end of line * Effect: if n is 1, clear from beginning of line to cursor * Effect: if n is 2, clear entire line * * CUF (Cursor Forward) * Sequence: ESC [ n C * Effect: moves cursor forward of n chars * * The following are used to clear the screen: ESC [ H ESC [ 2 J * This is actually composed of two sequences: * * cursorhome * Sequence: ESC [ H * Effect: moves the cursor to upper left corner * * ED2 (Clear entire screen) * Sequence: ESC [ 2 J * Effect: clear the whole screen * */ #ifdef _WIN32 #include #include #include #if defined(_MSC_VER) && _MSC_VER < 1900 #define snprintf _snprintf // Microsoft headers use underscores in some names #endif #if !defined GNUC #define strcasecmp _stricmp #endif #define strdup _strdup #define isatty _isatty #define write _write #define STDIN_FILENO 0 #else /* _WIN32 */ #include #include #include #include #include #include #include #include #include #endif /* _WIN32 */ #include #include #include #include "linenoise.h" #include "ConvertUTF.h" #include #include #include using std::string; using std::vector; using std::unique_ptr; using namespace linenoise_ng; typedef unsigned char char8_t; static ConversionResult copyString8to32(char32_t* dst, size_t dstSize, size_t& dstCount, const char* src) { const UTF8* sourceStart = reinterpret_cast(src); const UTF8* sourceEnd = sourceStart + strlen(src); UTF32* targetStart = reinterpret_cast(dst); UTF32* targetEnd = targetStart + dstSize; ConversionResult res = ConvertUTF8toUTF32( &sourceStart, sourceEnd, &targetStart, targetEnd, lenientConversion); if (res == conversionOK) { dstCount = targetStart - reinterpret_cast(dst); if (dstCount < dstSize) { *targetStart = 0; } } return res; } static ConversionResult copyString8to32(char32_t* dst, size_t dstSize, size_t& dstCount, const char8_t* src) { return copyString8to32(dst, dstSize, dstCount, reinterpret_cast(src)); } static size_t strlen32(const char32_t* str) { const char32_t* ptr = str; while (*ptr) { ++ptr; } return ptr - str; } static size_t strlen8(const char8_t* str) { return strlen(reinterpret_cast(str)); } static char8_t* strdup8(const char* src) { return reinterpret_cast(strdup(src)); } #ifdef _WIN32 static const int FOREGROUND_WHITE = FOREGROUND_RED | FOREGROUND_GREEN | FOREGROUND_BLUE; static const int BACKGROUND_WHITE = BACKGROUND_RED | BACKGROUND_GREEN | BACKGROUND_BLUE; static const int INTENSITY = FOREGROUND_INTENSITY | BACKGROUND_INTENSITY; class WinAttributes { public: WinAttributes() { CONSOLE_SCREEN_BUFFER_INFO info; GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &info); _defaultAttribute = info.wAttributes & INTENSITY; _defaultColor = info.wAttributes & FOREGROUND_WHITE; _defaultBackground = info.wAttributes & BACKGROUND_WHITE; _consoleAttribute = _defaultAttribute; _consoleColor = _defaultColor | _defaultBackground; } public: int _defaultAttribute; int _defaultColor; int _defaultBackground; int _consoleAttribute; int _consoleColor; }; static WinAttributes WIN_ATTR; static void copyString32to16(char16_t* dst, size_t dstSize, size_t* dstCount, const char32_t* src, size_t srcSize) { const UTF32* sourceStart = reinterpret_cast(src); const UTF32* sourceEnd = sourceStart + srcSize; char16_t* targetStart = reinterpret_cast(dst); char16_t* targetEnd = targetStart + dstSize; ConversionResult res = ConvertUTF32toUTF16( &sourceStart, sourceEnd, &targetStart, targetEnd, lenientConversion); if (res == conversionOK) { *dstCount = targetStart - reinterpret_cast(dst); if (*dstCount < dstSize) { *targetStart = 0; } } } #endif static void copyString32to8(char* dst, size_t dstSize, size_t* dstCount, const char32_t* src, size_t srcSize) { const UTF32* sourceStart = reinterpret_cast(src); const UTF32* sourceEnd = sourceStart + srcSize; UTF8* targetStart = reinterpret_cast(dst); UTF8* targetEnd = targetStart + dstSize; ConversionResult res = ConvertUTF32toUTF8( &sourceStart, sourceEnd, &targetStart, targetEnd, lenientConversion); if (res == conversionOK) { *dstCount = targetStart - reinterpret_cast(dst); if (*dstCount < dstSize) { *targetStart = 0; } } } static void copyString32to8(char* dst, size_t dstLen, const char32_t* src) { size_t dstCount = 0; copyString32to8(dst, dstLen, &dstCount, src, strlen32(src)); } static void copyString32(char32_t* dst, const char32_t* src, size_t len) { while (0 < len && *src) { *dst++ = *src++; --len; } *dst = 0; } static int strncmp32(const char32_t* left, const char32_t* right, size_t len) { while (0 < len && *left) { if (*left != *right) { return *left - *right; } ++left; ++right; --len; } return 0; } #ifdef _WIN32 #include static size_t OutputWin(char16_t* text16, char32_t* text32, size_t len32) { size_t count16 = 0; copyString32to16(text16, len32, &count16, text32, len32); WriteConsoleW(GetStdHandle(STD_OUTPUT_HANDLE), text16, static_cast(count16), nullptr, nullptr); return count16; } static char32_t* HandleEsc(char32_t* p, char32_t* end) { if (*p == '[') { int code = 0; for (++p; p < end; ++p) { char32_t c = *p; if ('0' <= c && c <= '9') { code = code * 10 + (c - '0'); } else if (c == 'm' || c == ';') { switch (code) { case 0: WIN_ATTR._consoleAttribute = WIN_ATTR._defaultAttribute; WIN_ATTR._consoleColor = WIN_ATTR._defaultColor | WIN_ATTR._defaultBackground; break; case 1: // BOLD case 5: // BLINK WIN_ATTR._consoleAttribute = (WIN_ATTR._defaultAttribute ^ FOREGROUND_INTENSITY) & INTENSITY; break; case 30: WIN_ATTR._consoleColor = BACKGROUND_WHITE; break; case 31: WIN_ATTR._consoleColor = FOREGROUND_RED | WIN_ATTR._defaultBackground; break; case 32: WIN_ATTR._consoleColor = FOREGROUND_GREEN | WIN_ATTR._defaultBackground; break; case 33: WIN_ATTR._consoleColor = FOREGROUND_RED | FOREGROUND_GREEN | WIN_ATTR._defaultBackground; break; case 34: WIN_ATTR._consoleColor = FOREGROUND_BLUE | WIN_ATTR._defaultBackground; break; case 35: WIN_ATTR._consoleColor = FOREGROUND_BLUE | FOREGROUND_RED | WIN_ATTR._defaultBackground; break; case 36: WIN_ATTR._consoleColor = FOREGROUND_BLUE | FOREGROUND_GREEN | WIN_ATTR._defaultBackground; break; case 37: WIN_ATTR._consoleColor = FOREGROUND_GREEN | FOREGROUND_RED | FOREGROUND_BLUE | WIN_ATTR._defaultBackground; break; } code = 0; } if (*p == 'm') { ++p; break; } } } else { ++p; } auto handle = GetStdHandle(STD_OUTPUT_HANDLE); SetConsoleTextAttribute(handle, WIN_ATTR._consoleAttribute | WIN_ATTR._consoleColor); return p; } static size_t WinWrite32(char16_t* text16, char32_t* text32, size_t len32) { char32_t* p = text32; char32_t* q = p; char32_t* e = text32 + len32; size_t count16 = 0; while (p < e) { if (*p == 27) { if (q < p) { count16 += OutputWin(text16, q, p - q); } q = p = HandleEsc(p + 1, e); } else { ++p; } } if (q < p) { count16 += OutputWin(text16, q, p - q); } return count16; } #endif static int write32(int fd, char32_t* text32, int len32) { #ifdef _WIN32 if (isatty(fd)) { size_t len16 = 2 * len32 + 1; unique_ptr text16(new char16_t[len16]); size_t count16 = WinWrite32(text16.get(), text32, len32); return static_cast(count16); } else { size_t len8 = 4 * len32 + 1; unique_ptr text8(new char[len8]); size_t count8 = 0; copyString32to8(text8.get(), len8, &count8, text32, len32); return write(fd, text8.get(), static_cast(count8)); } #else size_t len8 = 4 * len32 + 1; unique_ptr text8(new char[len8]); size_t count8 = 0; copyString32to8(text8.get(), len8, &count8, text32, len32); return write(fd, text8.get(), count8); #endif } class Utf32String { public: Utf32String() : _length(0), _data(nullptr) { // note: parens intentional, _data must be properly initialized _data = new char32_t[1](); } explicit Utf32String(const char* src) : _length(0), _data(nullptr) { size_t len = strlen(src); // note: parens intentional, _data must be properly initialized _data = new char32_t[len + 1](); copyString8to32(_data, len + 1, _length, src); } explicit Utf32String(const char8_t* src) : _length(0), _data(nullptr) { size_t len = strlen(reinterpret_cast(src)); // note: parens intentional, _data must be properly initialized _data = new char32_t[len + 1](); copyString8to32(_data, len + 1, _length, src); } explicit Utf32String(const char32_t* src) : _length(0), _data(nullptr) { for (_length = 0; src[_length] != 0; ++_length) { } // note: parens intentional, _data must be properly initialized _data = new char32_t[_length + 1](); memcpy(_data, src, _length * sizeof(char32_t)); } explicit Utf32String(const char32_t* src, int len) : _length(len), _data(nullptr) { // note: parens intentional, _data must be properly initialized _data = new char32_t[len + 1](); memcpy(_data, src, len * sizeof(char32_t)); } explicit Utf32String(int len) : _length(0), _data(nullptr) { // note: parens intentional, _data must be properly initialized _data = new char32_t[len](); } explicit Utf32String(const Utf32String& that) : _length(that._length), _data(nullptr) { // note: parens intentional, _data must be properly initialized _data = new char32_t[_length + 1](); memcpy(_data, that._data, sizeof(char32_t) * _length); } Utf32String& operator=(const Utf32String& that) { if (this != &that) { delete[] _data; _data = new char32_t[that._length](); _length = that._length; memcpy(_data, that._data, sizeof(char32_t) * _length); } return *this; } ~Utf32String() { delete[] _data; } public: char32_t* get() const { return _data; } size_t length() const { return _length; } size_t chars() const { return _length; } void initFromBuffer() { for (_length = 0; _data[_length] != 0; ++_length) { } } const char32_t& operator[](size_t pos) const { return _data[pos]; } char32_t& operator[](size_t pos) { return _data[pos]; } private: size_t _length; char32_t* _data; }; class Utf8String { Utf8String(const Utf8String&) = delete; Utf8String& operator=(const Utf8String&) = delete; public: explicit Utf8String(const Utf32String& src) { size_t len = src.length() * 4 + 1; _data = new char[len]; copyString32to8(_data, len, src.get()); } ~Utf8String() { delete[] _data; } public: char* get() const { return _data; } private: char* _data; }; struct linenoiseCompletions { vector completionStrings; }; #define LINENOISE_DEFAULT_HISTORY_MAX_LEN 100 #define LINENOISE_MAX_LINE 4096 // make control-characters more readable #define ctrlChar(upperCaseASCII) (upperCaseASCII - 0x40) /** * Recompute widths of all characters in a char32_t buffer * @param text input buffer of Unicode characters * @param widths output buffer of character widths * @param charCount number of characters in buffer */ namespace linenoise_ng { int mk_wcwidth(char32_t ucs); } static void recomputeCharacterWidths(const char32_t* text, char* widths, int charCount) { for (int i = 0; i < charCount; ++i) { widths[i] = mk_wcwidth(text[i]); } } /** * Calculate a new screen position given a starting position, screen width and * character count * @param x initial x position (zero-based) * @param y initial y position (zero-based) * @param screenColumns screen column count * @param charCount character positions to advance * @param xOut returned x position (zero-based) * @param yOut returned y position (zero-based) */ static void calculateScreenPosition(int x, int y, int screenColumns, int charCount, int& xOut, int& yOut) { xOut = x; yOut = y; int charsRemaining = charCount; while (charsRemaining > 0) { int charsThisRow = (x + charsRemaining < screenColumns) ? charsRemaining : screenColumns - x; xOut = x + charsThisRow; yOut = y; charsRemaining -= charsThisRow; x = 0; ++y; } if (xOut == screenColumns) { // we have to special-case line wrap xOut = 0; ++yOut; } } /** * Calculate a column width using mk_wcswidth() * @param buf32 text to calculate * @param len length of text to calculate */ namespace linenoise_ng { int mk_wcswidth(const char32_t* pwcs, size_t n); } static int calculateColumnPosition(char32_t* buf32, int len) { int width = mk_wcswidth(reinterpret_cast(buf32), len); if (width == -1) return len; else return width; } static bool isControlChar(char32_t testChar) { return (testChar < ' ') || // C0 controls (testChar >= 0x7F && testChar <= 0x9F); // DEL and C1 controls } struct PromptBase { // a convenience struct for grouping prompt info Utf32String promptText; // our copy of the prompt text, edited char* promptCharWidths; // character widths from mk_wcwidth() int promptChars; // chars in promptText int promptBytes; // bytes in promptText int promptExtraLines; // extra lines (beyond 1) occupied by prompt int promptIndentation; // column offset to end of prompt int promptLastLinePosition; // index into promptText where last line begins int promptPreviousInputLen; // promptChars of previous input line, for // clearing int promptCursorRowOffset; // where the cursor is relative to the start of // the prompt int promptScreenColumns; // width of screen in columns int promptPreviousLen; // help erasing int promptErrorCode; // error code (invalid UTF-8) or zero PromptBase() : promptPreviousInputLen(0) {} bool write() { if (write32(1, promptText.get(), promptBytes) == -1) return false; return true; } }; struct PromptInfo : public PromptBase { PromptInfo(const char* textPtr, int columns) { promptExtraLines = 0; promptLastLinePosition = 0; promptPreviousLen = 0; promptScreenColumns = columns; Utf32String tempUnicode(textPtr); // strip control characters from the prompt -- we do allow newline char32_t* pIn = tempUnicode.get(); char32_t* pOut = pIn; int len = 0; int x = 0; bool const strip = (isatty(1) == 0); while (*pIn) { char32_t c = *pIn; if ('\n' == c || !isControlChar(c)) { *pOut = c; ++pOut; ++pIn; ++len; if ('\n' == c || ++x >= promptScreenColumns) { x = 0; ++promptExtraLines; promptLastLinePosition = len; } } else if (c == '\x1b') { if (strip) { // jump over control chars ++pIn; if (*pIn == '[') { ++pIn; while (*pIn && ((*pIn == ';') || ((*pIn >= '0' && *pIn <= '9')))) { ++pIn; } if (*pIn == 'm') { ++pIn; } } } else { // copy control chars *pOut = *pIn; ++pOut; ++pIn; if (*pIn == '[') { *pOut = *pIn; ++pOut; ++pIn; while (*pIn && ((*pIn == ';') || ((*pIn >= '0' && *pIn <= '9')))) { *pOut = *pIn; ++pOut; ++pIn; } if (*pIn == 'm') { *pOut = *pIn; ++pOut; ++pIn; } } } } else { ++pIn; } } *pOut = 0; promptChars = len; promptBytes = static_cast(pOut - tempUnicode.get()); promptText = tempUnicode; promptIndentation = len - promptLastLinePosition; promptCursorRowOffset = promptExtraLines; } }; // Used with DynamicPrompt (history search) // static const Utf32String forwardSearchBasePrompt("(i-search)`"); static const Utf32String reverseSearchBasePrompt("(reverse-i-search)`"); static const Utf32String endSearchBasePrompt("': "); static Utf32String previousSearchText; // remembered across invocations of linenoise() // changing prompt for "(reverse-i-search)`text':" etc. // struct DynamicPrompt : public PromptBase { Utf32String searchText; // text we are searching for char* searchCharWidths; // character widths from mk_wcwidth() int searchTextLen; // chars in searchText int direction; // current search direction, 1=forward, -1=reverse DynamicPrompt(PromptBase& pi, int initialDirection) : searchTextLen(0), direction(initialDirection) { promptScreenColumns = pi.promptScreenColumns; promptCursorRowOffset = 0; Utf32String emptyString(1); searchText = emptyString; const Utf32String* basePrompt = (direction > 0) ? &forwardSearchBasePrompt : &reverseSearchBasePrompt; size_t promptStartLength = basePrompt->length(); promptChars = static_cast(promptStartLength + endSearchBasePrompt.length()); promptBytes = promptChars; promptLastLinePosition = promptChars; // TODO fix this, we are asssuming // that the history prompt won't wrap // (!) promptPreviousLen = promptChars; Utf32String tempUnicode(promptChars + 1); memcpy(tempUnicode.get(), basePrompt->get(), sizeof(char32_t) * promptStartLength); memcpy(&tempUnicode[promptStartLength], endSearchBasePrompt.get(), sizeof(char32_t) * (endSearchBasePrompt.length() + 1)); tempUnicode.initFromBuffer(); promptText = tempUnicode; calculateScreenPosition(0, 0, pi.promptScreenColumns, promptChars, promptIndentation, promptExtraLines); } void updateSearchPrompt(void) { const Utf32String* basePrompt = (direction > 0) ? &forwardSearchBasePrompt : &reverseSearchBasePrompt; size_t promptStartLength = basePrompt->length(); promptChars = static_cast(promptStartLength + searchTextLen + endSearchBasePrompt.length()); promptBytes = promptChars; Utf32String tempUnicode(promptChars + 1); memcpy(tempUnicode.get(), basePrompt->get(), sizeof(char32_t) * promptStartLength); memcpy(&tempUnicode[promptStartLength], searchText.get(), sizeof(char32_t) * searchTextLen); size_t endIndex = promptStartLength + searchTextLen; memcpy(&tempUnicode[endIndex], endSearchBasePrompt.get(), sizeof(char32_t) * (endSearchBasePrompt.length() + 1)); tempUnicode.initFromBuffer(); promptText = tempUnicode; } void updateSearchText(const char32_t* textPtr) { Utf32String tempUnicode(textPtr); searchTextLen = static_cast(tempUnicode.chars()); searchText = tempUnicode; updateSearchPrompt(); } }; class KillRing { static const int capacity = 10; int size; int index; char indexToSlot[10]; vector theRing; public: enum action { actionOther, actionKill, actionYank }; action lastAction; size_t lastYankSize; KillRing() : size(0), index(0), lastAction(actionOther) { theRing.reserve(capacity); } void kill(const char32_t* text, int textLen, bool forward) { if (textLen == 0) { return; } Utf32String killedText(text, textLen); if (lastAction == actionKill && size > 0) { int slot = indexToSlot[0]; int currentLen = static_cast(theRing[slot].length()); int resultLen = currentLen + textLen; Utf32String temp(resultLen + 1); if (forward) { memcpy(temp.get(), theRing[slot].get(), currentLen * sizeof(char32_t)); memcpy(&temp[currentLen], killedText.get(), textLen * sizeof(char32_t)); } else { memcpy(temp.get(), killedText.get(), textLen * sizeof(char32_t)); memcpy(&temp[textLen], theRing[slot].get(), currentLen * sizeof(char32_t)); } temp[resultLen] = 0; temp.initFromBuffer(); theRing[slot] = temp; } else { if (size < capacity) { if (size > 0) { memmove(&indexToSlot[1], &indexToSlot[0], size); } indexToSlot[0] = size; size++; theRing.push_back(killedText); } else { int slot = indexToSlot[capacity - 1]; theRing[slot] = killedText; memmove(&indexToSlot[1], &indexToSlot[0], capacity - 1); indexToSlot[0] = slot; } index = 0; } } Utf32String* yank() { return (size > 0) ? &theRing[indexToSlot[index]] : 0; } Utf32String* yankPop() { if (size == 0) { return 0; } ++index; if (index == size) { index = 0; } return &theRing[indexToSlot[index]]; } }; class InputBuffer { char32_t* buf32; // input buffer char* charWidths; // character widths from mk_wcwidth() int buflen; // buffer size in characters int len; // length of text in input buffer int pos; // character position in buffer ( 0 <= pos <= len ) void clearScreen(PromptBase& pi); int incrementalHistorySearch(PromptBase& pi, int startChar); int completeLine(PromptBase& pi); void refreshLine(PromptBase& pi); public: InputBuffer(char32_t* buffer, char* widthArray, int bufferLen) : buf32(buffer), charWidths(widthArray), buflen(bufferLen - 1), len(0), pos(0) { buf32[0] = 0; } void preloadBuffer(const char* preloadText) { size_t ucharCount = 0; copyString8to32(buf32, buflen + 1, ucharCount, preloadText); recomputeCharacterWidths(buf32, charWidths, static_cast(ucharCount)); len = static_cast(ucharCount); pos = static_cast(ucharCount); } int getInputLine(PromptBase& pi); int length(void) const { return len; } }; // Special codes for keyboard input: // // Between Windows and the various Linux "terminal" programs, there is some // pretty diverse behavior in the "scan codes" and escape sequences we are // presented with. So ... we'll translate them all into our own pidgin // pseudocode, trying to stay out of the way of UTF-8 and international // characters. Here's the general plan. // // "User input keystrokes" (key chords, whatever) will be encoded as a single // value. // The low 21 bits are reserved for Unicode characters. Popular function-type // keys // get their own codes in the range 0x10200000 to (if needed) 0x1FE00000, // currently // just arrow keys, Home, End and Delete. Keypresses with Ctrl get ORed with // 0x20000000, with Alt get ORed with 0x40000000. So, Ctrl+Alt+Home is encoded // as 0x20000000 + 0x40000000 + 0x10A00000 == 0x70A00000. To keep things // complicated, // the Alt key is equivalent to prefixing the keystroke with ESC, so ESC // followed by // D is treated the same as Alt + D ... we'll just use Emacs terminology and // call // this "Meta". So, we will encode both ESC followed by D and Alt held down // while D // is pressed the same, as Meta-D, encoded as 0x40000064. // // Here are the definitions of our component constants: // // Maximum unsigned 32-bit value = 0xFFFFFFFF; // For reference, max 32-bit // value // Highest allocated Unicode char = 0x001FFFFF; // For reference, max // Unicode value static const int META = 0x40000000; // Meta key combination static const int CTRL = 0x20000000; // Ctrl key combination // static const int SPECIAL_KEY = 0x10000000; // Common bit for all special // keys static const int UP_ARROW_KEY = 0x10200000; // Special keys static const int DOWN_ARROW_KEY = 0x10400000; static const int RIGHT_ARROW_KEY = 0x10600000; static const int LEFT_ARROW_KEY = 0x10800000; static const int HOME_KEY = 0x10A00000; static const int END_KEY = 0x10C00000; static const int DELETE_KEY = 0x10E00000; static const int PAGE_UP_KEY = 0x11000000; static const int PAGE_DOWN_KEY = 0x11200000; static const char* unsupported_term[] = {"dumb", "cons25", "emacs", NULL}; static linenoiseCompletionCallback* completionCallback = NULL; #ifdef _WIN32 static HANDLE console_in, console_out; static DWORD oldMode; static WORD oldDisplayAttribute; #else static struct termios orig_termios; /* in order to restore at exit */ #endif static KillRing killRing; static int rawmode = 0; /* for atexit() function to check if restore is needed*/ static int atexit_registered = 0; /* register atexit just 1 time */ static int historyMaxLen = LINENOISE_DEFAULT_HISTORY_MAX_LEN; static int historyLen = 0; static int historyIndex = 0; static char8_t** history = NULL; // used to emulate Windows command prompt on down-arrow after a recall // we use -2 as our "not set" value because we add 1 to the previous index on // down-arrow, // and zero is a valid index (so -1 is a valid "previous index") static int historyPreviousIndex = -2; static bool historyRecallMostRecent = false; static void linenoiseAtExit(void); static bool isUnsupportedTerm(void) { char* term = getenv("TERM"); if (term == NULL) return false; for (int j = 0; unsupported_term[j]; ++j) if (!strcasecmp(term, unsupported_term[j])) { return true; } return false; } static void beep() { fprintf(stderr, "\x7"); // ctrl-G == bell/beep fflush(stderr); } void linenoiseHistoryFree(void) { if (history) { for (int j = 0; j < historyLen; ++j) free(history[j]); historyLen = 0; free(history); history = 0; } } static int enableRawMode(void) { #ifdef _WIN32 if (!console_in) { console_in = GetStdHandle(STD_INPUT_HANDLE); console_out = GetStdHandle(STD_OUTPUT_HANDLE); GetConsoleMode(console_in, &oldMode); SetConsoleMode(console_in, oldMode & ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT | ENABLE_PROCESSED_INPUT)); } return 0; #else struct termios raw; if (!isatty(STDIN_FILENO)) goto fatal; if (!atexit_registered) { atexit(linenoiseAtExit); atexit_registered = 1; } if (tcgetattr(0, &orig_termios) == -1) goto fatal; raw = orig_termios; /* modify the original mode */ /* input modes: no break, no CR to NL, no parity check, no strip char, * no start/stop output control. */ raw.c_iflag &= ~(BRKINT | ICRNL | INPCK | ISTRIP | IXON); /* output modes - disable post processing */ // this is wrong, we don't want raw output, it turns newlines into straight // linefeeds // raw.c_oflag &= ~(OPOST); /* control modes - set 8 bit chars */ raw.c_cflag |= (CS8); /* local modes - echoing off, canonical off, no extended functions, * no signal chars (^Z,^C) */ raw.c_lflag &= ~(ECHO | ICANON | IEXTEN | ISIG); /* control chars - set return condition: min number of bytes and timer. * We want read to return every single byte, without timeout. */ raw.c_cc[VMIN] = 1; raw.c_cc[VTIME] = 0; /* 1 byte, no timer */ /* put terminal in raw mode after flushing */ if (tcsetattr(0, TCSADRAIN, &raw) < 0) goto fatal; rawmode = 1; return 0; fatal: errno = ENOTTY; return -1; #endif } static void disableRawMode(void) { #ifdef _WIN32 SetConsoleMode(console_in, oldMode); console_in = 0; console_out = 0; #else if (rawmode && tcsetattr(0, TCSADRAIN, &orig_termios) != -1) rawmode = 0; #endif } // At exit we'll try to fix the terminal to the initial conditions static void linenoiseAtExit(void) { disableRawMode(); } static int getScreenColumns(void) { int cols; #ifdef _WIN32 CONSOLE_SCREEN_BUFFER_INFO inf; GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &inf); cols = inf.dwSize.X; #else struct winsize ws; cols = (ioctl(1, TIOCGWINSZ, &ws) == -1) ? 80 : ws.ws_col; #endif // cols is 0 in certain circumstances like inside debugger, which creates // further issues return (cols > 0) ? cols : 80; } static int getScreenRows(void) { int rows; #ifdef _WIN32 CONSOLE_SCREEN_BUFFER_INFO inf; GetConsoleScreenBufferInfo(GetStdHandle(STD_OUTPUT_HANDLE), &inf); rows = 1 + inf.srWindow.Bottom - inf.srWindow.Top; #else struct winsize ws; rows = (ioctl(1, TIOCGWINSZ, &ws) == -1) ? 24 : ws.ws_row; #endif return (rows > 0) ? rows : 24; } static void setDisplayAttribute(bool enhancedDisplay, bool error) { #ifdef _WIN32 if (enhancedDisplay) { CONSOLE_SCREEN_BUFFER_INFO inf; GetConsoleScreenBufferInfo(console_out, &inf); oldDisplayAttribute = inf.wAttributes; BYTE oldLowByte = oldDisplayAttribute & 0xFF; BYTE newLowByte; switch (oldLowByte) { case 0x07: // newLowByte = FOREGROUND_BLUE | FOREGROUND_INTENSITY; // too dim // newLowByte = FOREGROUND_BLUE; // even dimmer newLowByte = FOREGROUND_BLUE | FOREGROUND_GREEN; // most similar to xterm appearance break; case 0x70: newLowByte = BACKGROUND_BLUE | BACKGROUND_INTENSITY; break; default: newLowByte = oldLowByte ^ 0xFF; // default to inverse video break; } inf.wAttributes = (inf.wAttributes & 0xFF00) | newLowByte; SetConsoleTextAttribute(console_out, inf.wAttributes); } else { SetConsoleTextAttribute(console_out, oldDisplayAttribute); } #else if (enhancedDisplay) { char const* p = (error ? "\x1b[1;31m" : "\x1b[1;34m"); if (write(1, p, 7) == -1) return; /* bright blue (visible with both B&W bg) */ } else { if (write(1, "\x1b[0m", 4) == -1) return; /* reset */ } #endif } /** * Display the dynamic incremental search prompt and the current user input * line. * @param pi PromptBase struct holding information about the prompt and our * screen position * @param buf32 input buffer to be displayed * @param len count of characters in the buffer * @param pos current cursor position within the buffer (0 <= pos <= len) */ static void dynamicRefresh(PromptBase& pi, char32_t* buf32, int len, int pos) { // calculate the position of the end of the prompt int xEndOfPrompt, yEndOfPrompt; calculateScreenPosition(0, 0, pi.promptScreenColumns, pi.promptChars, xEndOfPrompt, yEndOfPrompt); pi.promptIndentation = xEndOfPrompt; // calculate the position of the end of the input line int xEndOfInput, yEndOfInput; calculateScreenPosition(xEndOfPrompt, yEndOfPrompt, pi.promptScreenColumns, calculateColumnPosition(buf32, len), xEndOfInput, yEndOfInput); // calculate the desired position of the cursor int xCursorPos, yCursorPos; calculateScreenPosition(xEndOfPrompt, yEndOfPrompt, pi.promptScreenColumns, calculateColumnPosition(buf32, pos), xCursorPos, yCursorPos); #ifdef _WIN32 // position at the start of the prompt, clear to end of previous input CONSOLE_SCREEN_BUFFER_INFO inf; GetConsoleScreenBufferInfo(console_out, &inf); inf.dwCursorPosition.X = 0; inf.dwCursorPosition.Y -= pi.promptCursorRowOffset /*- pi.promptExtraLines*/; SetConsoleCursorPosition(console_out, inf.dwCursorPosition); DWORD count; FillConsoleOutputCharacterA(console_out, ' ', pi.promptPreviousLen + pi.promptPreviousInputLen, inf.dwCursorPosition, &count); pi.promptPreviousLen = pi.promptIndentation; pi.promptPreviousInputLen = len; // display the prompt if (!pi.write()) return; // display the input line if (write32(1, buf32, len) == -1) return; // position the cursor GetConsoleScreenBufferInfo(console_out, &inf); inf.dwCursorPosition.X = xCursorPos; // 0-based on Win32 inf.dwCursorPosition.Y -= yEndOfInput - yCursorPos; SetConsoleCursorPosition(console_out, inf.dwCursorPosition); #else // _WIN32 char seq[64]; int cursorRowMovement = pi.promptCursorRowOffset - pi.promptExtraLines; if (cursorRowMovement > 0) { // move the cursor up as required snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement); if (write(1, seq, strlen(seq)) == -1) return; } // position at the start of the prompt, clear to end of screen snprintf(seq, sizeof seq, "\x1b[1G\x1b[J"); // 1-based on VT100 if (write(1, seq, strlen(seq)) == -1) return; // display the prompt if (!pi.write()) return; // display the input line if (write32(1, buf32, len) == -1) return; // we have to generate our own newline on line wrap if (xEndOfInput == 0 && yEndOfInput > 0) if (write(1, "\n", 1) == -1) return; // position the cursor cursorRowMovement = yEndOfInput - yCursorPos; if (cursorRowMovement > 0) { // move the cursor up as required snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement); if (write(1, seq, strlen(seq)) == -1) return; } // position the cursor within the line snprintf(seq, sizeof seq, "\x1b[%dG", xCursorPos + 1); // 1-based on VT100 if (write(1, seq, strlen(seq)) == -1) return; #endif pi.promptCursorRowOffset = pi.promptExtraLines + yCursorPos; // remember row for next pass } /** * Refresh the user's input line: the prompt is already onscreen and is not * redrawn here * @param pi PromptBase struct holding information about the prompt and our * screen position */ void InputBuffer::refreshLine(PromptBase& pi) { // check for a matching brace/bracket/paren, remember its position if found int highlight = -1; bool indicateError = false; if (pos < len) { /* this scans for a brace matching buf32[pos] to highlight */ unsigned char part1, part2; int scanDirection = 0; if (strchr("}])", buf32[pos])) { scanDirection = -1; /* backwards */ if (buf32[pos] == '}') { part1 = '}'; part2 = '{'; } else if (buf32[pos] == ']') { part1 = ']'; part2 = '['; } else { part1 = ')'; part2 = '('; } } else if (strchr("{[(", buf32[pos])) { scanDirection = 1; /* forwards */ if (buf32[pos] == '{') { //part1 = '{'; part2 = '}'; part1 = '}'; part2 = '{'; } else if (buf32[pos] == '[') { //part1 = '['; part2 = ']'; part1 = ']'; part2 = '['; } else { //part1 = '('; part2 = ')'; part1 = ')'; part2 = '('; } } if (scanDirection) { int unmatched = scanDirection; int unmatchedOther = 0; for (int i = pos + scanDirection; i >= 0 && i < len; i += scanDirection) { /* TODO: the right thing when inside a string */ if (strchr("}])", buf32[i])) { if (buf32[i] == part1) { --unmatched; } else { --unmatchedOther; } } else if (strchr("{[(", buf32[i])) { if (buf32[i] == part2) { ++unmatched; } else { ++unmatchedOther; } } /* if (strchr("}])", buf32[i])) --unmatched; else if (strchr("{[(", buf32[i])) ++unmatched; */ if (unmatched == 0) { highlight = i; indicateError = (unmatchedOther != 0); break; } } } } // calculate the position of the end of the input line int xEndOfInput, yEndOfInput; calculateScreenPosition(pi.promptIndentation, 0, pi.promptScreenColumns, calculateColumnPosition(buf32, len), xEndOfInput, yEndOfInput); // calculate the desired position of the cursor int xCursorPos, yCursorPos; calculateScreenPosition(pi.promptIndentation, 0, pi.promptScreenColumns, calculateColumnPosition(buf32, pos), xCursorPos, yCursorPos); #ifdef _WIN32 // position at the end of the prompt, clear to end of previous input CONSOLE_SCREEN_BUFFER_INFO inf; GetConsoleScreenBufferInfo(console_out, &inf); inf.dwCursorPosition.X = pi.promptIndentation; // 0-based on Win32 inf.dwCursorPosition.Y -= pi.promptCursorRowOffset - pi.promptExtraLines; SetConsoleCursorPosition(console_out, inf.dwCursorPosition); DWORD count; if (len < pi.promptPreviousInputLen) FillConsoleOutputCharacterA(console_out, ' ', pi.promptPreviousInputLen, inf.dwCursorPosition, &count); pi.promptPreviousInputLen = len; // display the input line if (highlight == -1) { if (write32(1, buf32, len) == -1) return; } else { if (write32(1, buf32, highlight) == -1) return; setDisplayAttribute(true, indicateError); /* bright blue (visible with both B&W bg) */ if (write32(1, &buf32[highlight], 1) == -1) return; setDisplayAttribute(false, indicateError); if (write32(1, buf32 + highlight + 1, len - highlight - 1) == -1) return; } // position the cursor GetConsoleScreenBufferInfo(console_out, &inf); inf.dwCursorPosition.X = xCursorPos; // 0-based on Win32 inf.dwCursorPosition.Y -= yEndOfInput - yCursorPos; SetConsoleCursorPosition(console_out, inf.dwCursorPosition); #else // _WIN32 char seq[64]; int cursorRowMovement = pi.promptCursorRowOffset - pi.promptExtraLines; if (cursorRowMovement > 0) { // move the cursor up as required snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement); if (write(1, seq, strlen(seq)) == -1) return; } // position at the end of the prompt, clear to end of screen snprintf(seq, sizeof seq, "\x1b[%dG\x1b[J", pi.promptIndentation + 1); // 1-based on VT100 if (write(1, seq, strlen(seq)) == -1) return; if (highlight == -1) { // write unhighlighted text if (write32(1, buf32, len) == -1) return; } else { // highlight the matching brace/bracket/parenthesis if (write32(1, buf32, highlight) == -1) return; setDisplayAttribute(true, indicateError); if (write32(1, &buf32[highlight], 1) == -1) return; setDisplayAttribute(false, indicateError); if (write32(1, buf32 + highlight + 1, len - highlight - 1) == -1) return; } // we have to generate our own newline on line wrap if (xEndOfInput == 0 && yEndOfInput > 0) if (write(1, "\n", 1) == -1) return; // position the cursor cursorRowMovement = yEndOfInput - yCursorPos; if (cursorRowMovement > 0) { // move the cursor up as required snprintf(seq, sizeof seq, "\x1b[%dA", cursorRowMovement); if (write(1, seq, strlen(seq)) == -1) return; } // position the cursor within the line snprintf(seq, sizeof seq, "\x1b[%dG", xCursorPos + 1); // 1-based on VT100 if (write(1, seq, strlen(seq)) == -1) return; #endif pi.promptCursorRowOffset = pi.promptExtraLines + yCursorPos; // remember row for next pass } #ifndef _WIN32 /** * Read a UTF-8 sequence from the non-Windows keyboard and return the Unicode * (char32_t) character it * encodes * * @return char32_t Unicode character */ static char32_t readUnicodeCharacter(void) { static char8_t utf8String[5]; static size_t utf8Count = 0; while (true) { char8_t c; /* Continue reading if interrupted by signal. */ ssize_t nread; do { nread = read(0, &c, 1); } while ((nread == -1) && (errno == EINTR)); if (nread <= 0) return 0; if (c <= 0x7F) { // short circuit ASCII utf8Count = 0; return c; } else if (utf8Count < sizeof(utf8String) - 1) { utf8String[utf8Count++] = c; utf8String[utf8Count] = 0; char32_t unicodeChar[2]; size_t ucharCount; ConversionResult res = copyString8to32(unicodeChar, 2, ucharCount, utf8String); if (res == conversionOK && ucharCount) { utf8Count = 0; return unicodeChar[0]; } } else { utf8Count = 0; // this shouldn't happen: got four bytes but no UTF-8 character } } } namespace EscapeSequenceProcessing { // move these out of global namespace // This chunk of code does parsing of the escape sequences sent by various Linux // terminals. // // It handles arrow keys, Home, End and Delete keys by interpreting the // sequences sent by // gnome terminal, xterm, rxvt, konsole, aterm and yakuake including the Alt and // Ctrl key // combinations that are understood by linenoise. // // The parsing uses tables, a bunch of intermediate dispatch routines and a // doDispatch // loop that reads the tables and sends control to "deeper" routines to continue // the // parsing. The starting call to doDispatch( c, initialDispatch ) will // eventually return // either a character (with optional CTRL and META bits set), or -1 if parsing // fails, or // zero if an attempt to read from the keyboard fails. // // This is rather sloppy escape sequence processing, since we're not paying // attention to what the // actual TERM is set to and are processing all key sequences for all terminals, // but it works with // the most common keystrokes on the most common terminals. It's intricate, but // the nested 'if' // statements required to do it directly would be worse. This way has the // advantage of allowing // changes and extensions without having to touch a lot of code. // This is a typedef for the routine called by doDispatch(). It takes the // current character // as input, does any required processing including reading more characters and // calling other // dispatch routines, then eventually returns the final (possibly extended or // special) character. // typedef char32_t (*CharacterDispatchRoutine)(char32_t); // This structure is used by doDispatch() to hold a list of characters to test // for and // a list of routines to call if the character matches. The dispatch routine // list is one // longer than the character list; the final entry is used if no character // matches. // struct CharacterDispatch { unsigned int len; // length of the chars list const char* chars; // chars to test CharacterDispatchRoutine* dispatch; // array of routines to call }; // This dispatch routine is given a dispatch table and then farms work out to // routines // listed in the table based on the character it is called with. The dispatch // routines can // read more input characters to decide what should eventually be returned. // Eventually, // a called routine returns either a character or -1 to indicate parsing // failure. // static char32_t doDispatch(char32_t c, CharacterDispatch& dispatchTable) { for (unsigned int i = 0; i < dispatchTable.len; ++i) { if (static_cast(dispatchTable.chars[i]) == c) { return dispatchTable.dispatch[i](c); } } return dispatchTable.dispatch[dispatchTable.len](c); } static char32_t thisKeyMetaCtrl = 0; // holds pre-set Meta and/or Ctrl modifiers // Final dispatch routines -- return something // static char32_t normalKeyRoutine(char32_t c) { return thisKeyMetaCtrl | c; } static char32_t upArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | UP_ARROW_KEY; } static char32_t downArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | DOWN_ARROW_KEY; } static char32_t rightArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | RIGHT_ARROW_KEY; } static char32_t leftArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | LEFT_ARROW_KEY; } static char32_t homeKeyRoutine(char32_t) { return thisKeyMetaCtrl | HOME_KEY; } static char32_t endKeyRoutine(char32_t) { return thisKeyMetaCtrl | END_KEY; } static char32_t pageUpKeyRoutine(char32_t) { return thisKeyMetaCtrl | PAGE_UP_KEY; } static char32_t pageDownKeyRoutine(char32_t) { return thisKeyMetaCtrl | PAGE_DOWN_KEY; } static char32_t deleteCharRoutine(char32_t) { return thisKeyMetaCtrl | ctrlChar('H'); } // key labeled Backspace static char32_t deleteKeyRoutine(char32_t) { return thisKeyMetaCtrl | DELETE_KEY; } // key labeled Delete static char32_t ctrlUpArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | CTRL | UP_ARROW_KEY; } static char32_t ctrlDownArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | CTRL | DOWN_ARROW_KEY; } static char32_t ctrlRightArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | CTRL | RIGHT_ARROW_KEY; } static char32_t ctrlLeftArrowKeyRoutine(char32_t) { return thisKeyMetaCtrl | CTRL | LEFT_ARROW_KEY; } static char32_t escFailureRoutine(char32_t) { beep(); return -1; } // Handle ESC [ 1 ; 3 (or 5) escape sequences // static CharacterDispatchRoutine escLeftBracket1Semicolon3or5Routines[] = { upArrowKeyRoutine, downArrowKeyRoutine, rightArrowKeyRoutine, leftArrowKeyRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket1Semicolon3or5Dispatch = { 4, "ABCD", escLeftBracket1Semicolon3or5Routines}; // Handle ESC [ 1 ; escape sequences // static char32_t escLeftBracket1Semicolon3Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; thisKeyMetaCtrl |= META; return doDispatch(c, escLeftBracket1Semicolon3or5Dispatch); } static char32_t escLeftBracket1Semicolon5Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; thisKeyMetaCtrl |= CTRL; return doDispatch(c, escLeftBracket1Semicolon3or5Dispatch); } static CharacterDispatchRoutine escLeftBracket1SemicolonRoutines[] = { escLeftBracket1Semicolon3Routine, escLeftBracket1Semicolon5Routine, escFailureRoutine}; static CharacterDispatch escLeftBracket1SemicolonDispatch = { 2, "35", escLeftBracket1SemicolonRoutines}; // Handle ESC [ 1 escape sequences // static char32_t escLeftBracket1SemicolonRoutine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket1SemicolonDispatch); } static CharacterDispatchRoutine escLeftBracket1Routines[] = { homeKeyRoutine, escLeftBracket1SemicolonRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket1Dispatch = {2, "~;", escLeftBracket1Routines}; // Handle ESC [ 3 escape sequences // static CharacterDispatchRoutine escLeftBracket3Routines[] = {deleteKeyRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket3Dispatch = {1, "~", escLeftBracket3Routines}; // Handle ESC [ 4 escape sequences // static CharacterDispatchRoutine escLeftBracket4Routines[] = {endKeyRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket4Dispatch = {1, "~", escLeftBracket4Routines}; // Handle ESC [ 5 escape sequences // static CharacterDispatchRoutine escLeftBracket5Routines[] = {pageUpKeyRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket5Dispatch = {1, "~", escLeftBracket5Routines}; // Handle ESC [ 6 escape sequences // static CharacterDispatchRoutine escLeftBracket6Routines[] = {pageDownKeyRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket6Dispatch = {1, "~", escLeftBracket6Routines}; // Handle ESC [ 7 escape sequences // static CharacterDispatchRoutine escLeftBracket7Routines[] = {homeKeyRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket7Dispatch = {1, "~", escLeftBracket7Routines}; // Handle ESC [ 8 escape sequences // static CharacterDispatchRoutine escLeftBracket8Routines[] = {endKeyRoutine, escFailureRoutine}; static CharacterDispatch escLeftBracket8Dispatch = {1, "~", escLeftBracket8Routines}; // Handle ESC [ escape sequences // static char32_t escLeftBracket0Routine(char32_t c) { return escFailureRoutine(c); } static char32_t escLeftBracket1Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket1Dispatch); } static char32_t escLeftBracket2Routine(char32_t c) { return escFailureRoutine(c); // Insert key, unused } static char32_t escLeftBracket3Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket3Dispatch); } static char32_t escLeftBracket4Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket4Dispatch); } static char32_t escLeftBracket5Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket5Dispatch); } static char32_t escLeftBracket6Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket6Dispatch); } static char32_t escLeftBracket7Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket7Dispatch); } static char32_t escLeftBracket8Routine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracket8Dispatch); } static char32_t escLeftBracket9Routine(char32_t c) { return escFailureRoutine(c); } // Handle ESC [ escape sequences // static CharacterDispatchRoutine escLeftBracketRoutines[] = { upArrowKeyRoutine, downArrowKeyRoutine, rightArrowKeyRoutine, leftArrowKeyRoutine, homeKeyRoutine, endKeyRoutine, escLeftBracket0Routine, escLeftBracket1Routine, escLeftBracket2Routine, escLeftBracket3Routine, escLeftBracket4Routine, escLeftBracket5Routine, escLeftBracket6Routine, escLeftBracket7Routine, escLeftBracket8Routine, escLeftBracket9Routine, escFailureRoutine}; static CharacterDispatch escLeftBracketDispatch = {16, "ABCDHF0123456789", escLeftBracketRoutines}; // Handle ESC O escape sequences // static CharacterDispatchRoutine escORoutines[] = { upArrowKeyRoutine, downArrowKeyRoutine, rightArrowKeyRoutine, leftArrowKeyRoutine, homeKeyRoutine, endKeyRoutine, ctrlUpArrowKeyRoutine, ctrlDownArrowKeyRoutine, ctrlRightArrowKeyRoutine, ctrlLeftArrowKeyRoutine, escFailureRoutine}; static CharacterDispatch escODispatch = {10, "ABCDHFabcd", escORoutines}; // Initial ESC dispatch -- could be a Meta prefix or the start of an escape // sequence // static char32_t escLeftBracketRoutine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escLeftBracketDispatch); } static char32_t escORoutine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escODispatch); } static char32_t setMetaRoutine(char32_t c); // need forward reference static CharacterDispatchRoutine escRoutines[] = {escLeftBracketRoutine, escORoutine, setMetaRoutine}; static CharacterDispatch escDispatch = {2, "[O", escRoutines}; // Initial dispatch -- we are not in the middle of anything yet // static char32_t escRoutine(char32_t c) { c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escDispatch); } static CharacterDispatchRoutine initialRoutines[] = { escRoutine, deleteCharRoutine, normalKeyRoutine}; static CharacterDispatch initialDispatch = {2, "\x1B\x7F", initialRoutines}; // Special handling for the ESC key because it does double duty // static char32_t setMetaRoutine(char32_t c) { thisKeyMetaCtrl = META; if (c == 0x1B) { // another ESC, stay in ESC processing mode c = readUnicodeCharacter(); if (c == 0) return 0; return doDispatch(c, escDispatch); } return doDispatch(c, initialDispatch); } } // namespace EscapeSequenceProcessing // move these out of global namespace #endif // #ifndef _WIN32 // linenoiseReadChar -- read a keystroke or keychord from the keyboard, and // translate it // into an encoded "keystroke". When convenient, extended keys are translated // into their // simpler Emacs keystrokes, so an unmodified "left arrow" becomes Ctrl-B. // // A return value of zero means "no input available", and a return value of -1 // means "invalid key". // static char32_t linenoiseReadChar(void) { #ifdef _WIN32 INPUT_RECORD rec; DWORD count; int modifierKeys = 0; bool escSeen = false; while (true) { ReadConsoleInputW(console_in, &rec, 1, &count); #if 0 // helper for debugging keystrokes, display info in the debug "Output" // window in the debugger { if ( rec.EventType == KEY_EVENT ) { //if ( rec.Event.KeyEvent.uChar.UnicodeChar ) { char buf[1024]; sprintf( buf, "Unicode character 0x%04X, repeat count %d, virtual keycode 0x%04X, " "virtual scancode 0x%04X, key %s%s%s%s%s\n", rec.Event.KeyEvent.uChar.UnicodeChar, rec.Event.KeyEvent.wRepeatCount, rec.Event.KeyEvent.wVirtualKeyCode, rec.Event.KeyEvent.wVirtualScanCode, rec.Event.KeyEvent.bKeyDown ? "down" : "up", (rec.Event.KeyEvent.dwControlKeyState & LEFT_CTRL_PRESSED) ? " L-Ctrl" : "", (rec.Event.KeyEvent.dwControlKeyState & RIGHT_CTRL_PRESSED) ? " R-Ctrl" : "", (rec.Event.KeyEvent.dwControlKeyState & LEFT_ALT_PRESSED) ? " L-Alt" : "", (rec.Event.KeyEvent.dwControlKeyState & RIGHT_ALT_PRESSED) ? " R-Alt" : "" ); OutputDebugStringA( buf ); //} } } #endif if (rec.EventType != KEY_EVENT) { continue; } // Windows provides for entry of characters that are not on your keyboard by // sending the // Unicode characters as a "key up" with virtual keycode 0x12 (VK_MENU == // Alt key) ... // accept these characters, otherwise only process characters on "key down" if (!rec.Event.KeyEvent.bKeyDown && rec.Event.KeyEvent.wVirtualKeyCode != VK_MENU) { continue; } modifierKeys = 0; // AltGr is encoded as ( LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED ), so don't // treat this // combination as either CTRL or META we just turn off those two bits, so it // is still // possible to combine CTRL and/or META with an AltGr key by using // right-Ctrl and/or // left-Alt if ((rec.Event.KeyEvent.dwControlKeyState & (LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED)) == (LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED)) { rec.Event.KeyEvent.dwControlKeyState &= ~(LEFT_CTRL_PRESSED | RIGHT_ALT_PRESSED); } if (rec.Event.KeyEvent.dwControlKeyState & (RIGHT_CTRL_PRESSED | LEFT_CTRL_PRESSED)) { modifierKeys |= CTRL; } if (rec.Event.KeyEvent.dwControlKeyState & (RIGHT_ALT_PRESSED | LEFT_ALT_PRESSED)) { modifierKeys |= META; } if (escSeen) { modifierKeys |= META; } if (rec.Event.KeyEvent.uChar.UnicodeChar == 0) { switch (rec.Event.KeyEvent.wVirtualKeyCode) { case VK_LEFT: return modifierKeys | LEFT_ARROW_KEY; case VK_RIGHT: return modifierKeys | RIGHT_ARROW_KEY; case VK_UP: return modifierKeys | UP_ARROW_KEY; case VK_DOWN: return modifierKeys | DOWN_ARROW_KEY; case VK_DELETE: return modifierKeys | DELETE_KEY; case VK_HOME: return modifierKeys | HOME_KEY; case VK_END: return modifierKeys | END_KEY; case VK_PRIOR: return modifierKeys | PAGE_UP_KEY; case VK_NEXT: return modifierKeys | PAGE_DOWN_KEY; default: continue; // in raw mode, ReadConsoleInput shows shift, ctrl ... } // ... ignore them } else if (rec.Event.KeyEvent.uChar.UnicodeChar == ctrlChar('[')) { // ESC, set flag for later escSeen = true; continue; } else { // we got a real character, return it return modifierKeys | rec.Event.KeyEvent.uChar.UnicodeChar; } } #else char32_t c; c = readUnicodeCharacter(); if (c == 0) return 0; // If _DEBUG_LINUX_KEYBOARD is set, then ctrl-^ puts us into a keyboard // debugging mode // where we print out decimal and decoded values for whatever the "terminal" // program // gives us on different keystrokes. Hit ctrl-C to exit this mode. // #define _DEBUG_LINUX_KEYBOARD #if defined(_DEBUG_LINUX_KEYBOARD) if (c == ctrlChar('^')) { // ctrl-^, special debug mode, prints all keys hit, // ctrl-C to get out printf( "\nEntering keyboard debugging mode (on ctrl-^), press ctrl-C to exit " "this mode\n"); while (true) { unsigned char keys[10]; int ret = read(0, keys, 10); if (ret <= 0) { printf("\nret: %d\n", ret); } for (int i = 0; i < ret; ++i) { char32_t key = static_cast(keys[i]); char* friendlyTextPtr; char friendlyTextBuf[10]; const char* prefixText = (key < 0x80) ? "" : "0x80+"; char32_t keyCopy = (key < 0x80) ? key : key - 0x80; if (keyCopy >= '!' && keyCopy <= '~') { // printable friendlyTextBuf[0] = '\''; friendlyTextBuf[1] = keyCopy; friendlyTextBuf[2] = '\''; friendlyTextBuf[3] = 0; friendlyTextPtr = friendlyTextBuf; } else if (keyCopy == ' ') { friendlyTextPtr = const_cast("space"); } else if (keyCopy == 27) { friendlyTextPtr = const_cast("ESC"); } else if (keyCopy == 0) { friendlyTextPtr = const_cast("NUL"); } else if (keyCopy == 127) { friendlyTextPtr = const_cast("DEL"); } else { friendlyTextBuf[0] = '^'; friendlyTextBuf[1] = keyCopy + 0x40; friendlyTextBuf[2] = 0; friendlyTextPtr = friendlyTextBuf; } printf("%d x%02X (%s%s) ", key, key, prefixText, friendlyTextPtr); } printf("\x1b[1G\n"); // go to first column of new line // drop out of this loop on ctrl-C if (keys[0] == ctrlChar('C')) { printf("Leaving keyboard debugging mode (on ctrl-C)\n"); fflush(stdout); return -2; } } } #endif // _DEBUG_LINUX_KEYBOARD EscapeSequenceProcessing::thisKeyMetaCtrl = 0; // no modifiers yet at initialDispatch return EscapeSequenceProcessing::doDispatch( c, EscapeSequenceProcessing::initialDispatch); #endif // #_WIN32 } /** * Free memory used in a recent command completion session * * @param lc pointer to a linenoiseCompletions struct */ static void freeCompletions(linenoiseCompletions* lc) { lc->completionStrings.clear(); } /** * convert {CTRL + 'A'}, {CTRL + 'a'} and {CTRL + ctrlChar( 'A' )} into * ctrlChar( 'A' ) * leave META alone * * @param c character to clean up * @return cleaned-up character */ static int cleanupCtrl(int c) { if (c & CTRL) { int d = c & 0x1FF; if (d >= 'a' && d <= 'z') { c = (c + ('a' - ctrlChar('A'))) & ~CTRL; } if (d >= 'A' && d <= 'Z') { c = (c + ('A' - ctrlChar('A'))) & ~CTRL; } if (d >= ctrlChar('A') && d <= ctrlChar('Z')) { c = c & ~CTRL; } } return c; } // break characters that may precede items to be completed static const char breakChars[] = " =+-/\\*?\"'`&<>;|@{([])}"; // maximum number of completions to display without asking static const size_t completionCountCutoff = 100; /** * Handle command completion, using a completionCallback() routine to provide * possible substitutions * This routine handles the mechanics of updating the user's input buffer with * possible replacement * of text as the user selects a proposed completion string, or cancels the * completion attempt. * @param pi PromptBase struct holding information about the prompt and our * screen position */ int InputBuffer::completeLine(PromptBase& pi) { linenoiseCompletions lc; char32_t c = 0; // completionCallback() expects a parsable entity, so find the previous break // character and // extract a copy to parse. we also handle the case where tab is hit while // not at end-of-line. int startIndex = pos; while (--startIndex >= 0) { if (strchr(breakChars, buf32[startIndex])) { break; } } ++startIndex; int itemLength = pos - startIndex; Utf32String unicodeCopy(&buf32[startIndex], itemLength); Utf8String parseItem(unicodeCopy); // get a list of completions completionCallback(parseItem.get(), &lc); // if no completions, we are done if (lc.completionStrings.size() == 0) { beep(); freeCompletions(&lc); return 0; } // at least one completion int longestCommonPrefix = 0; int displayLength = 0; if (lc.completionStrings.size() == 1) { longestCommonPrefix = static_cast(lc.completionStrings[0].length()); } else { bool keepGoing = true; while (keepGoing) { for (size_t j = 0; j < lc.completionStrings.size() - 1; ++j) { char32_t c1 = lc.completionStrings[j][longestCommonPrefix]; char32_t c2 = lc.completionStrings[j + 1][longestCommonPrefix]; if ((0 == c1) || (0 == c2) || (c1 != c2)) { keepGoing = false; break; } } if (keepGoing) { ++longestCommonPrefix; } } } if (lc.completionStrings.size() != 1) { // beep if ambiguous beep(); } // if we can extend the item, extend it and return to main loop if (longestCommonPrefix > itemLength) { displayLength = len + longestCommonPrefix - itemLength; if (displayLength > buflen) { longestCommonPrefix -= displayLength - buflen; // don't overflow buffer displayLength = buflen; // truncate the insertion beep(); // and make a noise } Utf32String displayText(displayLength + 1); memcpy(displayText.get(), buf32, sizeof(char32_t) * startIndex); memcpy(&displayText[startIndex], &lc.completionStrings[0][0], sizeof(char32_t) * longestCommonPrefix); int tailIndex = startIndex + longestCommonPrefix; memcpy(&displayText[tailIndex], &buf32[pos], sizeof(char32_t) * (displayLength - tailIndex + 1)); copyString32(buf32, displayText.get(), displayLength); pos = startIndex + longestCommonPrefix; len = displayLength; refreshLine(pi); return 0; } // we can't complete any further, wait for second tab do { c = linenoiseReadChar(); c = cleanupCtrl(c); } while (c == static_cast(-1)); // if any character other than tab, pass it to the main loop if (c != ctrlChar('I')) { freeCompletions(&lc); return c; } // we got a second tab, maybe show list of possible completions bool showCompletions = true; bool onNewLine = false; if (lc.completionStrings.size() > completionCountCutoff) { int savePos = pos; // move cursor to EOL to avoid overwriting the command line pos = len; refreshLine(pi); pos = savePos; printf("\nDisplay all %u possibilities? (y or n)", static_cast(lc.completionStrings.size())); fflush(stdout); onNewLine = true; while (c != 'y' && c != 'Y' && c != 'n' && c != 'N' && c != ctrlChar('C')) { do { c = linenoiseReadChar(); c = cleanupCtrl(c); } while (c == static_cast(-1)); } switch (c) { case 'n': case 'N': showCompletions = false; freeCompletions(&lc); break; case ctrlChar('C'): showCompletions = false; freeCompletions(&lc); if (write(1, "^C", 2) == -1) return -1; // Display the ^C we got c = 0; break; } } // if showing the list, do it the way readline does it bool stopList = false; if (showCompletions) { int longestCompletion = 0; for (size_t j = 0; j < lc.completionStrings.size(); ++j) { itemLength = static_cast(lc.completionStrings[j].length()); if (itemLength > longestCompletion) { longestCompletion = itemLength; } } longestCompletion += 2; int columnCount = pi.promptScreenColumns / longestCompletion; if (columnCount < 1) { columnCount = 1; } if (!onNewLine) { // skip this if we showed "Display all %d possibilities?" int savePos = pos; // move cursor to EOL to avoid overwriting the command line pos = len; refreshLine(pi); pos = savePos; } size_t pauseRow = getScreenRows() - 1; size_t rowCount = (lc.completionStrings.size() + columnCount - 1) / columnCount; for (size_t row = 0; row < rowCount; ++row) { if (row == pauseRow) { printf("\n--More--"); fflush(stdout); c = 0; bool doBeep = false; while (c != ' ' && c != '\r' && c != '\n' && c != 'y' && c != 'Y' && c != 'n' && c != 'N' && c != 'q' && c != 'Q' && c != ctrlChar('C')) { if (doBeep) { beep(); } doBeep = true; do { c = linenoiseReadChar(); c = cleanupCtrl(c); } while (c == static_cast(-1)); } switch (c) { case ' ': case 'y': case 'Y': printf("\r \r"); pauseRow += getScreenRows() - 1; break; case '\r': case '\n': printf("\r \r"); ++pauseRow; break; case 'n': case 'N': case 'q': case 'Q': printf("\r \r"); stopList = true; break; case ctrlChar('C'): if (write(1, "^C", 2) == -1) return -1; // Display the ^C we got stopList = true; break; } } else { printf("\n"); } if (stopList) { break; } for (int column = 0; column < columnCount; ++column) { size_t index = (column * rowCount) + row; if (index < lc.completionStrings.size()) { itemLength = static_cast(lc.completionStrings[index].length()); fflush(stdout); if (write32(1, lc.completionStrings[index].get(), itemLength) == -1) return -1; if (((column + 1) * rowCount) + row < lc.completionStrings.size()) { for (int k = itemLength; k < longestCompletion; ++k) { printf(" "); } } } } } fflush(stdout); freeCompletions(&lc); } // display the prompt on a new line, then redisplay the input buffer if (!stopList || c == ctrlChar('C')) { if (write(1, "\n", 1) == -1) return 0; } if (!pi.write()) return 0; #ifndef _WIN32 // we have to generate our own newline on line wrap on Linux if (pi.promptIndentation == 0 && pi.promptExtraLines > 0) if (write(1, "\n", 1) == -1) return 0; #endif pi.promptCursorRowOffset = pi.promptExtraLines; refreshLine(pi); return 0; } /** * Clear the screen ONLY (no redisplay of anything) */ void linenoiseClearScreen(void) { #ifdef _WIN32 COORD coord = {0, 0}; CONSOLE_SCREEN_BUFFER_INFO inf; HANDLE screenHandle = GetStdHandle(STD_OUTPUT_HANDLE); GetConsoleScreenBufferInfo(screenHandle, &inf); SetConsoleCursorPosition(screenHandle, coord); DWORD count; FillConsoleOutputCharacterA(screenHandle, ' ', inf.dwSize.X * inf.dwSize.Y, coord, &count); #else if (write(1, "\x1b[H\x1b[2J", 7) <= 0) return; #endif } void InputBuffer::clearScreen(PromptBase& pi) { linenoiseClearScreen(); if (!pi.write()) return; #ifndef _WIN32 // we have to generate our own newline on line wrap on Linux if (pi.promptIndentation == 0 && pi.promptExtraLines > 0) if (write(1, "\n", 1) == -1) return; #endif pi.promptCursorRowOffset = pi.promptExtraLines; refreshLine(pi); } /** * Incremental history search -- take over the prompt and keyboard as the user * types a search * string, deletes characters from it, changes direction, and either accepts the * found line (for * execution orediting) or cancels. * @param pi PromptBase struct holding information about the (old, * static) prompt and our * screen position * @param startChar the character that began the search, used to set the initial * direction */ int InputBuffer::incrementalHistorySearch(PromptBase& pi, int startChar) { size_t bufferSize; size_t ucharCount = 0; // if not already recalling, add the current line to the history list so we // don't have to // special case it if (historyIndex == historyLen - 1) { free(history[historyLen - 1]); bufferSize = sizeof(char32_t) * len + 1; unique_ptr tempBuffer(new char[bufferSize]); copyString32to8(tempBuffer.get(), bufferSize, buf32); history[historyLen - 1] = strdup8(tempBuffer.get()); } int historyLineLength = len; int historyLinePosition = pos; char32_t emptyBuffer[1]; char emptyWidths[1]; InputBuffer empty(emptyBuffer, emptyWidths, 1); empty.refreshLine(pi); // erase the old input first DynamicPrompt dp(pi, (startChar == ctrlChar('R')) ? -1 : 1); dp.promptPreviousLen = pi.promptPreviousLen; dp.promptPreviousInputLen = pi.promptPreviousInputLen; dynamicRefresh(dp, buf32, historyLineLength, historyLinePosition); // draw user's text with our prompt // loop until we get an exit character int c = 0; bool keepLooping = true; bool useSearchedLine = true; bool searchAgain = false; char32_t* activeHistoryLine = 0; while (keepLooping) { c = linenoiseReadChar(); c = cleanupCtrl(c); // convert CTRL + into normal ctrl switch (c) { // these characters keep the selected text but do not execute it case ctrlChar('A'): // ctrl-A, move cursor to start of line case HOME_KEY: case ctrlChar('B'): // ctrl-B, move cursor left by one character case LEFT_ARROW_KEY: case META + 'b': // meta-B, move cursor left by one word case META + 'B': case CTRL + LEFT_ARROW_KEY: case META + LEFT_ARROW_KEY: // Emacs allows Meta, bash & readline don't case ctrlChar('D'): case META + 'd': // meta-D, kill word to right of cursor case META + 'D': case ctrlChar('E'): // ctrl-E, move cursor to end of line case END_KEY: case ctrlChar('F'): // ctrl-F, move cursor right by one character case RIGHT_ARROW_KEY: case META + 'f': // meta-F, move cursor right by one word case META + 'F': case CTRL + RIGHT_ARROW_KEY: case META + RIGHT_ARROW_KEY: // Emacs allows Meta, bash & readline don't case META + ctrlChar('H'): case ctrlChar('J'): case ctrlChar('K'): // ctrl-K, kill from cursor to end of line case ctrlChar('M'): case ctrlChar('N'): // ctrl-N, recall next line in history case ctrlChar('P'): // ctrl-P, recall previous line in history case DOWN_ARROW_KEY: case UP_ARROW_KEY: case ctrlChar('T'): // ctrl-T, transpose characters case ctrlChar( 'U'): // ctrl-U, kill all characters to the left of the cursor case ctrlChar('W'): case META + 'y': // meta-Y, "yank-pop", rotate popped text case META + 'Y': case 127: case DELETE_KEY: case META + '<': // start of history case PAGE_UP_KEY: case META + '>': // end of history case PAGE_DOWN_KEY: keepLooping = false; break; // these characters revert the input line to its previous state case ctrlChar('C'): // ctrl-C, abort this line case ctrlChar('G'): case ctrlChar('L'): // ctrl-L, clear screen and redisplay line keepLooping = false; useSearchedLine = false; if (c != ctrlChar('L')) { c = -1; // ctrl-C and ctrl-G just abort the search and do nothing // else } break; // these characters stay in search mode and update the display case ctrlChar('S'): case ctrlChar('R'): if (dp.searchTextLen == 0) { // if no current search text, recall previous text if (previousSearchText.length()) { dp.updateSearchText(previousSearchText.get()); } } if ((dp.direction == 1 && c == ctrlChar('R')) || (dp.direction == -1 && c == ctrlChar('S'))) { dp.direction = 0 - dp.direction; // reverse direction dp.updateSearchPrompt(); // change the prompt } else { searchAgain = true; // same direction, search again } break; // job control is its own thing #ifndef _WIN32 case ctrlChar('Z'): // ctrl-Z, job control disableRawMode(); // Returning to Linux (whatever) shell, leave raw // mode raise(SIGSTOP); // Break out in mid-line enableRawMode(); // Back from Linux shell, re-enter raw mode { bufferSize = historyLineLength + 1; unique_ptr tempUnicode(new char32_t[bufferSize]); copyString8to32(tempUnicode.get(), bufferSize, ucharCount, history[historyIndex]); dynamicRefresh(dp, tempUnicode.get(), historyLineLength, historyLinePosition); } continue; break; #endif // these characters update the search string, and hence the selected input // line case ctrlChar('H'): // backspace/ctrl-H, delete char to left of cursor if (dp.searchTextLen > 0) { unique_ptr tempUnicode(new char32_t[dp.searchTextLen]); --dp.searchTextLen; dp.searchText[dp.searchTextLen] = 0; copyString32(tempUnicode.get(), dp.searchText.get(), dp.searchTextLen); dp.updateSearchText(tempUnicode.get()); } else { beep(); } break; case ctrlChar('Y'): // ctrl-Y, yank killed text break; default: if (!isControlChar(c) && c <= 0x0010FFFF) { // not an action character unique_ptr tempUnicode( new char32_t[dp.searchTextLen + 2]); copyString32(tempUnicode.get(), dp.searchText.get(), dp.searchTextLen); tempUnicode[dp.searchTextLen] = c; tempUnicode[dp.searchTextLen + 1] = 0; dp.updateSearchText(tempUnicode.get()); } else { beep(); } } // switch // if we are staying in search mode, search now if (keepLooping) { bufferSize = historyLineLength + 1; if (activeHistoryLine) { delete[] activeHistoryLine; activeHistoryLine = nullptr; } activeHistoryLine = new char32_t[bufferSize]; copyString8to32(activeHistoryLine, bufferSize, ucharCount, history[historyIndex]); if (dp.searchTextLen > 0) { bool found = false; int historySearchIndex = historyIndex; int lineLength = static_cast(ucharCount); int lineSearchPos = historyLinePosition; if (searchAgain) { lineSearchPos += dp.direction; } searchAgain = false; while (true) { while ((dp.direction > 0) ? (lineSearchPos < lineLength) : (lineSearchPos >= 0)) { if (strncmp32(dp.searchText.get(), &activeHistoryLine[lineSearchPos], dp.searchTextLen) == 0) { found = true; break; } lineSearchPos += dp.direction; } if (found) { historyIndex = historySearchIndex; historyLineLength = lineLength; historyLinePosition = lineSearchPos; break; } else if ((dp.direction > 0) ? (historySearchIndex < historyLen - 1) : (historySearchIndex > 0)) { historySearchIndex += dp.direction; bufferSize = strlen8(history[historySearchIndex]) + 1; delete[] activeHistoryLine; activeHistoryLine = nullptr; activeHistoryLine = new char32_t[bufferSize]; copyString8to32(activeHistoryLine, bufferSize, ucharCount, history[historySearchIndex]); lineLength = static_cast(ucharCount); lineSearchPos = (dp.direction > 0) ? 0 : (lineLength - dp.searchTextLen); } else { beep(); break; } }; // while } if (activeHistoryLine) { delete[] activeHistoryLine; activeHistoryLine = nullptr; } bufferSize = historyLineLength + 1; activeHistoryLine = new char32_t[bufferSize]; copyString8to32(activeHistoryLine, bufferSize, ucharCount, history[historyIndex]); dynamicRefresh(dp, activeHistoryLine, historyLineLength, historyLinePosition); // draw user's text with our prompt } } // while // leaving history search, restore previous prompt, maybe make searched line // current PromptBase pb; pb.promptChars = pi.promptIndentation; pb.promptBytes = pi.promptBytes; Utf32String tempUnicode(pb.promptBytes + 1); copyString32(tempUnicode.get(), &pi.promptText[pi.promptLastLinePosition], pb.promptBytes - pi.promptLastLinePosition); tempUnicode.initFromBuffer(); pb.promptText = tempUnicode; pb.promptExtraLines = 0; pb.promptIndentation = pi.promptIndentation; pb.promptLastLinePosition = 0; pb.promptPreviousInputLen = historyLineLength; pb.promptCursorRowOffset = dp.promptCursorRowOffset; pb.promptScreenColumns = pi.promptScreenColumns; pb.promptPreviousLen = dp.promptChars; if (useSearchedLine && activeHistoryLine) { historyRecallMostRecent = true; copyString32(buf32, activeHistoryLine, buflen + 1); len = historyLineLength; pos = historyLinePosition; } if (activeHistoryLine) { delete[] activeHistoryLine; activeHistoryLine = nullptr; } dynamicRefresh(pb, buf32, len, pos); // redraw the original prompt with current input pi.promptPreviousInputLen = len; pi.promptCursorRowOffset = pi.promptExtraLines + pb.promptCursorRowOffset; previousSearchText = dp.searchText; // save search text for possible reuse on ctrl-R ctrl-R return c; // pass a character or -1 back to main loop } static bool isCharacterAlphanumeric(char32_t testChar) { #ifdef _WIN32 return (iswalnum((wint_t)testChar) != 0 ? true : false); #else return (iswalnum(testChar) != 0 ? true : false); #endif } #ifndef _WIN32 static bool gotResize = false; #endif static int keyType = 0; int InputBuffer::getInputLine(PromptBase& pi) { keyType = 0; // The latest history entry is always our current buffer if (len > 0) { size_t bufferSize = sizeof(char32_t) * len + 1; unique_ptr tempBuffer(new char[bufferSize]); copyString32to8(tempBuffer.get(), bufferSize, buf32); linenoiseHistoryAdd(tempBuffer.get()); } else { linenoiseHistoryAdd(""); } historyIndex = historyLen - 1; historyRecallMostRecent = false; // display the prompt if (!pi.write()) return -1; #ifndef _WIN32 // we have to generate our own newline on line wrap on Linux if (pi.promptIndentation == 0 && pi.promptExtraLines > 0) if (write(1, "\n", 1) == -1) return -1; #endif // the cursor starts out at the end of the prompt pi.promptCursorRowOffset = pi.promptExtraLines; // kill and yank start in "other" mode killRing.lastAction = KillRing::actionOther; // when history search returns control to us, we execute its terminating // keystroke int terminatingKeystroke = -1; // if there is already text in the buffer, display it first if (len > 0) { refreshLine(pi); } // loop collecting characters, respond to line editing characters while (true) { int c; if (terminatingKeystroke == -1) { c = linenoiseReadChar(); // get a new keystroke keyType = 0; if (c != 0) { // set flag that we got some input if (c == ctrlChar('C')) { keyType = 1; } else if (c == ctrlChar('D')) { keyType = 2; } } #ifndef _WIN32 if (c == 0 && gotResize) { // caught a window resize event // now redraw the prompt and line gotResize = false; pi.promptScreenColumns = getScreenColumns(); dynamicRefresh(pi, buf32, len, pos); // redraw the original prompt with current input continue; } #endif } else { c = terminatingKeystroke; // use the terminating keystroke from search terminatingKeystroke = -1; // clear it once we've used it } c = cleanupCtrl(c); // convert CTRL + into normal ctrl if (c == 0) { return len; } if (c == -1) { refreshLine(pi); continue; } if (c == -2) { if (!pi.write()) return -1; refreshLine(pi); continue; } // ctrl-I/tab, command completion, needs to be before switch statement if (c == ctrlChar('I') && completionCallback) { if (pos == 0) // SERVER-4967 -- in earlier versions, you could paste // previous output continue; // back into the shell ... this output may have leading // tabs. // This hack (i.e. what the old code did) prevents command completion // on an empty line but lets users paste text with leading tabs. killRing.lastAction = KillRing::actionOther; historyRecallMostRecent = false; // completeLine does the actual completion and replacement c = completeLine(pi); if (c < 0) // return on error return len; if (c == 0) // read next character when 0 continue; // deliberate fall-through here, so we use the terminating character } switch (c) { case ctrlChar('A'): // ctrl-A, move cursor to start of line case HOME_KEY: killRing.lastAction = KillRing::actionOther; pos = 0; refreshLine(pi); break; case ctrlChar('B'): // ctrl-B, move cursor left by one character case LEFT_ARROW_KEY: killRing.lastAction = KillRing::actionOther; if (pos > 0) { --pos; refreshLine(pi); } break; case META + 'b': // meta-B, move cursor left by one word case META + 'B': case CTRL + LEFT_ARROW_KEY: case META + LEFT_ARROW_KEY: // Emacs allows Meta, bash & readline don't killRing.lastAction = KillRing::actionOther; if (pos > 0) { while (pos > 0 && !isCharacterAlphanumeric(buf32[pos - 1])) { --pos; } while (pos > 0 && isCharacterAlphanumeric(buf32[pos - 1])) { --pos; } refreshLine(pi); } break; case ctrlChar('C'): // ctrl-C, abort this line killRing.lastAction = KillRing::actionOther; historyRecallMostRecent = false; errno = EAGAIN; --historyLen; free(history[historyLen]); // we need one last refresh with the cursor at the end of the line // so we don't display the next prompt over the previous input line pos = len; // pass len as pos for EOL refreshLine(pi); if (write(1, "^C", 2) == -1) return -1; // Display the ^C we got return -1; case META + 'c': // meta-C, give word initial Cap case META + 'C': killRing.lastAction = KillRing::actionOther; historyRecallMostRecent = false; if (pos < len) { while (pos < len && !isCharacterAlphanumeric(buf32[pos])) { ++pos; } if (pos < len && isCharacterAlphanumeric(buf32[pos])) { if (buf32[pos] >= 'a' && buf32[pos] <= 'z') { buf32[pos] += 'A' - 'a'; } ++pos; } while (pos < len && isCharacterAlphanumeric(buf32[pos])) { if (buf32[pos] >= 'A' && buf32[pos] <= 'Z') { buf32[pos] += 'a' - 'A'; } ++pos; } refreshLine(pi); } break; // ctrl-D, delete the character under the cursor // on an empty line, exit the shell case ctrlChar('D'): killRing.lastAction = KillRing::actionOther; if (len > 0 && pos < len) { historyRecallMostRecent = false; memmove(buf32 + pos, buf32 + pos + 1, sizeof(char32_t) * (len - pos)); --len; refreshLine(pi); } else if (len == 0) { --historyLen; free(history[historyLen]); return -1; } break; case META + 'd': // meta-D, kill word to right of cursor case META + 'D': if (pos < len) { historyRecallMostRecent = false; int endingPos = pos; while (endingPos < len && !isCharacterAlphanumeric(buf32[endingPos])) { ++endingPos; } while (endingPos < len && isCharacterAlphanumeric(buf32[endingPos])) { ++endingPos; } killRing.kill(&buf32[pos], endingPos - pos, true); memmove(buf32 + pos, buf32 + endingPos, sizeof(char32_t) * (len - endingPos + 1)); len -= endingPos - pos; refreshLine(pi); } killRing.lastAction = KillRing::actionKill; break; case ctrlChar('E'): // ctrl-E, move cursor to end of line case END_KEY: killRing.lastAction = KillRing::actionOther; pos = len; refreshLine(pi); break; case ctrlChar('F'): // ctrl-F, move cursor right by one character case RIGHT_ARROW_KEY: killRing.lastAction = KillRing::actionOther; if (pos < len) { ++pos; refreshLine(pi); } break; case META + 'f': // meta-F, move cursor right by one word case META + 'F': case CTRL + RIGHT_ARROW_KEY: case META + RIGHT_ARROW_KEY: // Emacs allows Meta, bash & readline don't killRing.lastAction = KillRing::actionOther; if (pos < len) { while (pos < len && !isCharacterAlphanumeric(buf32[pos])) { ++pos; } while (pos < len && isCharacterAlphanumeric(buf32[pos])) { ++pos; } refreshLine(pi); } break; case ctrlChar('H'): // backspace/ctrl-H, delete char to left of cursor killRing.lastAction = KillRing::actionOther; if (pos > 0) { historyRecallMostRecent = false; memmove(buf32 + pos - 1, buf32 + pos, sizeof(char32_t) * (1 + len - pos)); --pos; --len; refreshLine(pi); } break; // meta-Backspace, kill word to left of cursor case META + ctrlChar('H'): if (pos > 0) { historyRecallMostRecent = false; int startingPos = pos; while (pos > 0 && !isCharacterAlphanumeric(buf32[pos - 1])) { --pos; } while (pos > 0 && isCharacterAlphanumeric(buf32[pos - 1])) { --pos; } killRing.kill(&buf32[pos], startingPos - pos, false); memmove(buf32 + pos, buf32 + startingPos, sizeof(char32_t) * (len - startingPos + 1)); len -= startingPos - pos; refreshLine(pi); } killRing.lastAction = KillRing::actionKill; break; case ctrlChar('J'): // ctrl-J/linefeed/newline, accept line case ctrlChar('M'): // ctrl-M/return/enter killRing.lastAction = KillRing::actionOther; // we need one last refresh with the cursor at the end of the line // so we don't display the next prompt over the previous input line pos = len; // pass len as pos for EOL refreshLine(pi); historyPreviousIndex = historyRecallMostRecent ? historyIndex : -2; --historyLen; free(history[historyLen]); return len; case ctrlChar('K'): // ctrl-K, kill from cursor to end of line killRing.kill(&buf32[pos], len - pos, true); buf32[pos] = '\0'; len = pos; refreshLine(pi); killRing.lastAction = KillRing::actionKill; historyRecallMostRecent = false; break; case ctrlChar('L'): // ctrl-L, clear screen and redisplay line clearScreen(pi); break; case META + 'l': // meta-L, lowercase word case META + 'L': killRing.lastAction = KillRing::actionOther; if (pos < len) { historyRecallMostRecent = false; while (pos < len && !isCharacterAlphanumeric(buf32[pos])) { ++pos; } while (pos < len && isCharacterAlphanumeric(buf32[pos])) { if (buf32[pos] >= 'A' && buf32[pos] <= 'Z') { buf32[pos] += 'a' - 'A'; } ++pos; } refreshLine(pi); } break; case ctrlChar('N'): // ctrl-N, recall next line in history case ctrlChar('P'): // ctrl-P, recall previous line in history case DOWN_ARROW_KEY: case UP_ARROW_KEY: killRing.lastAction = KillRing::actionOther; // if not already recalling, add the current line to the history list so // we don't // have to special case it if (historyIndex == historyLen - 1) { free(history[historyLen - 1]); size_t tempBufferSize = sizeof(char32_t) * len + 1; unique_ptr tempBuffer(new char[tempBufferSize]); copyString32to8(tempBuffer.get(), tempBufferSize, buf32); history[historyLen - 1] = strdup8(tempBuffer.get()); } if (historyLen > 1) { if (c == UP_ARROW_KEY) { c = ctrlChar('P'); } if (historyPreviousIndex != -2 && c != ctrlChar('P')) { historyIndex = 1 + historyPreviousIndex; // emulate Windows down-arrow } else { historyIndex += (c == ctrlChar('P')) ? -1 : 1; } historyPreviousIndex = -2; if (historyIndex < 0) { historyIndex = 0; break; } else if (historyIndex >= historyLen) { historyIndex = historyLen - 1; break; } historyRecallMostRecent = true; size_t ucharCount = 0; copyString8to32(buf32, buflen, ucharCount, history[historyIndex]); len = pos = static_cast(ucharCount); refreshLine(pi); } break; case ctrlChar('R'): // ctrl-R, reverse history search case ctrlChar('S'): // ctrl-S, forward history search terminatingKeystroke = incrementalHistorySearch(pi, c); break; case ctrlChar('T'): // ctrl-T, transpose characters killRing.lastAction = KillRing::actionOther; if (pos > 0 && len > 1) { historyRecallMostRecent = false; size_t leftCharPos = (pos == len) ? pos - 2 : pos - 1; char32_t aux = buf32[leftCharPos]; buf32[leftCharPos] = buf32[leftCharPos + 1]; buf32[leftCharPos + 1] = aux; if (pos != len) ++pos; refreshLine(pi); } break; case ctrlChar( 'U'): // ctrl-U, kill all characters to the left of the cursor if (pos > 0) { historyRecallMostRecent = false; killRing.kill(&buf32[0], pos, false); len -= pos; memmove(buf32, buf32 + pos, sizeof(char32_t) * (len + 1)); pos = 0; refreshLine(pi); } killRing.lastAction = KillRing::actionKill; break; case META + 'u': // meta-U, uppercase word case META + 'U': killRing.lastAction = KillRing::actionOther; if (pos < len) { historyRecallMostRecent = false; while (pos < len && !isCharacterAlphanumeric(buf32[pos])) { ++pos; } while (pos < len && isCharacterAlphanumeric(buf32[pos])) { if (buf32[pos] >= 'a' && buf32[pos] <= 'z') { buf32[pos] += 'A' - 'a'; } ++pos; } refreshLine(pi); } break; // ctrl-W, kill to whitespace (not word) to left of cursor case ctrlChar('W'): if (pos > 0) { historyRecallMostRecent = false; int startingPos = pos; while (pos > 0 && buf32[pos - 1] == ' ') { --pos; } while (pos > 0 && buf32[pos - 1] != ' ') { --pos; } killRing.kill(&buf32[pos], startingPos - pos, false); memmove(buf32 + pos, buf32 + startingPos, sizeof(char32_t) * (len - startingPos + 1)); len -= startingPos - pos; refreshLine(pi); } killRing.lastAction = KillRing::actionKill; break; case ctrlChar('Y'): // ctrl-Y, yank killed text historyRecallMostRecent = false; { Utf32String* restoredText = killRing.yank(); if (restoredText) { bool truncated = false; size_t ucharCount = restoredText->length(); if (ucharCount > static_cast(buflen - len)) { ucharCount = buflen - len; truncated = true; } memmove(buf32 + pos + ucharCount, buf32 + pos, sizeof(char32_t) * (len - pos + 1)); memmove(buf32 + pos, restoredText->get(), sizeof(char32_t) * ucharCount); pos += static_cast(ucharCount); len += static_cast(ucharCount); refreshLine(pi); killRing.lastAction = KillRing::actionYank; killRing.lastYankSize = ucharCount; if (truncated) { beep(); } } else { beep(); } } break; case META + 'y': // meta-Y, "yank-pop", rotate popped text case META + 'Y': if (killRing.lastAction == KillRing::actionYank) { historyRecallMostRecent = false; Utf32String* restoredText = killRing.yankPop(); if (restoredText) { bool truncated = false; size_t ucharCount = restoredText->length(); if (ucharCount > static_cast(killRing.lastYankSize + buflen - len)) { ucharCount = killRing.lastYankSize + buflen - len; truncated = true; } if (ucharCount > killRing.lastYankSize) { memmove(buf32 + pos + ucharCount - killRing.lastYankSize, buf32 + pos, sizeof(char32_t) * (len - pos + 1)); memmove(buf32 + pos - killRing.lastYankSize, restoredText->get(), sizeof(char32_t) * ucharCount); } else { memmove(buf32 + pos - killRing.lastYankSize, restoredText->get(), sizeof(char32_t) * ucharCount); memmove(buf32 + pos + ucharCount - killRing.lastYankSize, buf32 + pos, sizeof(char32_t) * (len - pos + 1)); } pos += static_cast(ucharCount - killRing.lastYankSize); len += static_cast(ucharCount - killRing.lastYankSize); killRing.lastYankSize = ucharCount; refreshLine(pi); if (truncated) { beep(); } break; } } beep(); break; #ifndef _WIN32 case ctrlChar('Z'): // ctrl-Z, job control disableRawMode(); // Returning to Linux (whatever) shell, leave raw // mode raise(SIGSTOP); // Break out in mid-line enableRawMode(); // Back from Linux shell, re-enter raw mode if (!pi.write()) break; // Redraw prompt refreshLine(pi); // Refresh the line break; #endif // DEL, delete the character under the cursor case 127: case DELETE_KEY: killRing.lastAction = KillRing::actionOther; if (len > 0 && pos < len) { historyRecallMostRecent = false; memmove(buf32 + pos, buf32 + pos + 1, sizeof(char32_t) * (len - pos)); --len; refreshLine(pi); } break; case META + '<': // meta-<, beginning of history case PAGE_UP_KEY: // Page Up, beginning of history case META + '>': // meta->, end of history case PAGE_DOWN_KEY: // Page Down, end of history killRing.lastAction = KillRing::actionOther; // if not already recalling, add the current line to the history list so // we don't // have to special case it if (historyIndex == historyLen - 1) { free(history[historyLen - 1]); size_t tempBufferSize = sizeof(char32_t) * len + 1; unique_ptr tempBuffer(new char[tempBufferSize]); copyString32to8(tempBuffer.get(), tempBufferSize, buf32); history[historyLen - 1] = strdup8(tempBuffer.get()); } if (historyLen > 1) { historyIndex = (c == META + '<' || c == PAGE_UP_KEY) ? 0 : historyLen - 1; historyPreviousIndex = -2; historyRecallMostRecent = true; size_t ucharCount = 0; copyString8to32(buf32, buflen, ucharCount, history[historyIndex]); len = pos = static_cast(ucharCount); refreshLine(pi); } break; // not one of our special characters, maybe insert it in the buffer default: killRing.lastAction = KillRing::actionOther; historyRecallMostRecent = false; if (c & (META | CTRL)) { // beep on unknown Ctrl and/or Meta keys beep(); break; } if (len < buflen) { if (isControlChar(c)) { // don't insert control characters beep(); break; } if (len == pos) { // at end of buffer buf32[pos] = c; ++pos; ++len; buf32[len] = '\0'; int inputLen = calculateColumnPosition(buf32, len); if (pi.promptIndentation + inputLen < pi.promptScreenColumns) { if (inputLen > pi.promptPreviousInputLen) pi.promptPreviousInputLen = inputLen; /* Avoid a full update of the line in the * trivial case. */ if (write32(1, reinterpret_cast(&c), 1) == -1) return -1; } else { refreshLine(pi); } } else { // not at end of buffer, have to move characters to our // right memmove(buf32 + pos + 1, buf32 + pos, sizeof(char32_t) * (len - pos)); buf32[pos] = c; ++len; ++pos; buf32[len] = '\0'; refreshLine(pi); } } else { beep(); // buffer is full, beep on new characters } break; } } return len; } static string preloadedBufferContents; // used with linenoisePreloadBuffer static string preloadErrorMessage; /** * linenoisePreloadBuffer provides text to be inserted into the command buffer * * the provided text will be processed to be usable and will be used to preload * the input buffer on the next call to linenoise() * * @param preloadText text to begin with on the next call to linenoise() */ void linenoisePreloadBuffer(const char* preloadText) { if (!preloadText) { return; } int bufferSize = static_cast(strlen(preloadText) + 1); unique_ptr tempBuffer(new char[bufferSize]); strncpy(&tempBuffer[0], preloadText, bufferSize); // remove characters that won't display correctly char* pIn = &tempBuffer[0]; char* pOut = pIn; bool controlsStripped = false; bool whitespaceSeen = false; while (*pIn) { unsigned char c = *pIn++; // we need unsigned so chars 0x80 and above are allowed if ('\r' == c) { // silently skip CR continue; } if ('\n' == c || '\t' == c) { // note newline or tab whitespaceSeen = true; continue; } if (isControlChar( c)) { // remove other control characters, flag for message controlsStripped = true; *pOut++ = ' '; continue; } if (whitespaceSeen) { // convert whitespace to a single space *pOut++ = ' '; whitespaceSeen = false; } *pOut++ = c; } *pOut = 0; int processedLength = static_cast(pOut - tempBuffer.get()); bool lineTruncated = false; if (processedLength > (LINENOISE_MAX_LINE - 1)) { lineTruncated = true; tempBuffer[LINENOISE_MAX_LINE - 1] = 0; } preloadedBufferContents = tempBuffer.get(); if (controlsStripped) { preloadErrorMessage += " [Edited line: control characters were converted to spaces]\n"; } if (lineTruncated) { preloadErrorMessage += " [Edited line: the line length was reduced from "; char buf[128]; snprintf(buf, sizeof(buf), "%d to %d]\n", processedLength, (LINENOISE_MAX_LINE - 1)); preloadErrorMessage += buf; } } /** * linenoise is a readline replacement. * * call it with a prompt to display and it will return a line of input from the * user * * @param prompt text of prompt to display to the user * @return the returned string belongs to the caller on return and must be * freed to prevent * memory leaks */ char* linenoise(const char* prompt) { #ifndef _WIN32 gotResize = false; #endif if (isatty(STDIN_FILENO)) { // input is from a terminal char32_t buf32[LINENOISE_MAX_LINE]; char charWidths[LINENOISE_MAX_LINE]; if (!preloadErrorMessage.empty()) { printf("%s", preloadErrorMessage.c_str()); fflush(stdout); preloadErrorMessage.clear(); } PromptInfo pi(prompt, getScreenColumns()); if (isUnsupportedTerm()) { if (!pi.write()) return 0; fflush(stdout); if (preloadedBufferContents.empty()) { unique_ptr buf8(new char[LINENOISE_MAX_LINE]); if (fgets(buf8.get(), LINENOISE_MAX_LINE, stdin) == NULL) { return NULL; } size_t len = strlen(buf8.get()); while (len && (buf8[len - 1] == '\n' || buf8[len - 1] == '\r')) { --len; buf8[len] = '\0'; } return strdup(buf8.get()); // caller must free buffer } else { char* buf8 = strdup(preloadedBufferContents.c_str()); preloadedBufferContents.clear(); return buf8; // caller must free buffer } } else { if (enableRawMode() == -1) { return NULL; } InputBuffer ib(buf32, charWidths, LINENOISE_MAX_LINE); if (!preloadedBufferContents.empty()) { ib.preloadBuffer(preloadedBufferContents.c_str()); preloadedBufferContents.clear(); } int count = ib.getInputLine(pi); disableRawMode(); printf("\n"); if (count == -1) { return NULL; } size_t bufferSize = sizeof(char32_t) * ib.length() + 1; unique_ptr buf8(new char[bufferSize]); copyString32to8(buf8.get(), bufferSize, buf32); return strdup(buf8.get()); // caller must free buffer } } else { // input not from a terminal, we should work with piped input, i.e. // redirected stdin unique_ptr buf8(new char[LINENOISE_MAX_LINE]); if (fgets(buf8.get(), LINENOISE_MAX_LINE, stdin) == NULL) { return NULL; } // if fgets() gave us the newline, remove it int count = static_cast(strlen(buf8.get())); if (count > 0 && buf8[count - 1] == '\n') { --count; buf8[count] = '\0'; } return strdup(buf8.get()); // caller must free buffer } } /* Register a callback function to be called for tab-completion. */ void linenoiseSetCompletionCallback(linenoiseCompletionCallback* fn) { completionCallback = fn; } void linenoiseAddCompletion(linenoiseCompletions* lc, const char* str) { lc->completionStrings.push_back(Utf32String(str)); } int linenoiseHistoryAdd(const char* line) { if (historyMaxLen == 0) { return 0; } if (history == NULL) { history = reinterpret_cast(malloc(sizeof(char8_t*) * historyMaxLen)); if (history == NULL) { return 0; } memset(history, 0, (sizeof(char*) * historyMaxLen)); } char8_t* linecopy = strdup8(line); if (!linecopy) { return 0; } // convert newlines in multi-line code to spaces before storing char8_t* p = linecopy; while (*p) { if (*p == '\n') { *p = ' '; } ++p; } // prevent duplicate history entries if (historyLen > 0 && history[historyLen - 1] != nullptr && strcmp(reinterpret_cast(history[historyLen - 1]), reinterpret_cast(linecopy)) == 0) { free(linecopy); return 0; } if (historyLen == historyMaxLen) { free(history[0]); memmove(history, history + 1, sizeof(char*) * (historyMaxLen - 1)); --historyLen; if (--historyPreviousIndex < -1) { historyPreviousIndex = -2; } } history[historyLen] = linecopy; ++historyLen; return 1; } int linenoiseHistorySetMaxLen(int len) { if (len < 1) { return 0; } if (history) { int tocopy = historyLen; char8_t** newHistory = reinterpret_cast(malloc(sizeof(char8_t*) * len)); if (newHistory == NULL) { return 0; } if (len < tocopy) { tocopy = len; } memcpy(newHistory, history + historyMaxLen - tocopy, sizeof(char8_t*) * tocopy); free(history); history = newHistory; } historyMaxLen = len; if (historyLen > historyMaxLen) { historyLen = historyMaxLen; } return 1; } /* Fetch a line of the history by (zero-based) index. If the requested * line does not exist, NULL is returned. The return value is a heap-allocated * copy of the line, and the caller is responsible for de-allocating it. */ char* linenoiseHistoryLine(int index) { if (index < 0 || index >= historyLen) return NULL; return strdup(reinterpret_cast(history[index])); } /* Save the history in the specified file. On success 0 is returned * otherwise -1 is returned. */ int linenoiseHistorySave(const char* filename) { #if _WIN32 FILE* fp = fopen(filename, "wt"); #else int fd = open(filename, O_CREAT | O_TRUNC | O_WRONLY, S_IRUSR | S_IWUSR); if (fd < 0) { return -1; } FILE* fp = fdopen(fd, "wt"); #endif if (fp == NULL) { return -1; } for (int j = 0; j < historyLen; ++j) { if (history[j][0] != '\0') { fprintf(fp, "%s\n", history[j]); } } fclose(fp); return 0; } /* Load the history from the specified file. If the file does not exist * zero is returned and no operation is performed. * * If the file exists and the operation succeeded 0 is returned, otherwise * on error -1 is returned. */ int linenoiseHistoryLoad(const char* filename) { FILE* fp = fopen(filename, "rt"); if (fp == NULL) { return -1; } char buf[LINENOISE_MAX_LINE]; while (fgets(buf, LINENOISE_MAX_LINE, fp) != NULL) { char* p = strchr(buf, '\r'); if (!p) { p = strchr(buf, '\n'); } if (p) { *p = '\0'; } if (p != buf) { linenoiseHistoryAdd(buf); } } fclose(fp); return 0; } /* Set if to use or not the multi line mode. */ /* note that this is a stub only, as linenoise-ng always multi-line */ void linenoiseSetMultiLine(int) {} /* This special mode is used by linenoise in order to print scan codes * on screen for debugging / development purposes. It is implemented * by the linenoise_example program using the --keycodes option. */ void linenoisePrintKeyCodes(void) { char quit[4]; printf( "Linenoise key codes debugging mode.\n" "Press keys to see scan codes. Type 'quit' at any time to exit.\n"); if (enableRawMode() == -1) return; memset(quit, ' ', 4); while (1) { char c; int nread; #if _WIN32 nread = _read(STDIN_FILENO, &c, 1); #else nread = read(STDIN_FILENO, &c, 1); #endif if (nread <= 0) continue; memmove(quit, quit + 1, sizeof(quit) - 1); /* shift string to left. */ quit[sizeof(quit) - 1] = c; /* Insert current char on the right. */ if (memcmp(quit, "quit", sizeof(quit)) == 0) break; printf("'%c' %02x (%d) (type quit to exit)\n", isprint(c) ? c : '?', (int)c, (int)c); printf("\r"); /* Go left edge manually, we are in raw mode. */ fflush(stdout); } disableRawMode(); } #ifndef _WIN32 static void WindowSizeChanged(int) { // do nothing here but setting this flag gotResize = true; } #endif int linenoiseInstallWindowChangeHandler(void) { #ifndef _WIN32 struct sigaction sa; sigemptyset(&sa.sa_mask); sa.sa_flags = 0; sa.sa_handler = &WindowSizeChanged; if (sigaction(SIGWINCH, &sa, nullptr) == -1) { return errno; } #endif return 0; } int linenoiseKeyType(void) { return keyType; }