#include "expr.hh" #include "globals.hh" #include "store.hh" Error badTerm(const format & f, ATerm t) { char * s = ATwriteToString(t); if (!s) throw Error("cannot print term"); if (strlen(s) > 1000) { int len; s = ATwriteToSharedString(t, &len); if (!s) throw Error("cannot print term"); } return Error(format("%1%, in `%2%'") % f.str() % (string) s); } Hash hashTerm(ATerm t) { return hashString(atPrint(t)); } Path writeTerm(ATerm t, const string & suffix) { /* The id of a term is its hash. */ Hash h = hashTerm(t); Path path = canonPath(nixStore + "/" + (string) h + suffix + ".nix"); if (!isValidPath(path)) { char * s = ATwriteToString(t); if (!s) throw Error(format("cannot write aterm to `%1%'") % path); addTextToStore(path, string(s)); } return path; } static void parsePaths(ATermList paths, PathSet & out) { ATMatcher m; for (ATermIterator i(paths); i; ++i) { string s; if (!(atMatch(m, *i) >> s)) throw badTerm("not a path", *i); out.insert(s); } } static void checkClosure(const Closure & closure) { if (closure.elems.size() == 0) throw Error("empty closure"); PathSet decl; for (ClosureElems::const_iterator i = closure.elems.begin(); i != closure.elems.end(); i++) decl.insert(i->first); for (PathSet::const_iterator i = closure.roots.begin(); i != closure.roots.end(); i++) if (decl.find(*i) == decl.end()) throw Error(format("undefined root path `%1%'") % *i); for (ClosureElems::const_iterator i = closure.elems.begin(); i != closure.elems.end(); i++) for (PathSet::const_iterator j = i->second.refs.begin(); j != i->second.refs.end(); j++) if (decl.find(*j) == decl.end()) throw Error( format("undefined path `%1%' referenced by `%2%'") % *j % i->first); } /* Parse a closure. */ static bool parseClosure(ATerm t, Closure & closure) { ATermList roots, elems; ATMatcher m; if (!(atMatch(m, t) >> "Closure" >> roots >> elems)) return false; parsePaths(roots, closure.roots); for (ATermIterator i(elems); i; ++i) { string path; ATermList refs; if (!(atMatch(m, *i) >> "" >> path >> refs)) throw badTerm("not a closure element", *i); ClosureElem elem; parsePaths(refs, elem.refs); closure.elems[path] = elem; } checkClosure(closure); return true; } static bool parseDerivation(ATerm t, Derivation & derivation) { ATMatcher m; ATermList outs, ins, args, bnds; string builder, platform; if (!(atMatch(m, t) >> "Derive" >> outs >> ins >> platform >> builder >> args >> bnds)) return false; parsePaths(outs, derivation.outputs); parsePaths(ins, derivation.inputs); derivation.builder = builder; derivation.platform = platform; for (ATermIterator i(args); i; ++i) { string s; if (!(atMatch(m, *i) >> s)) throw badTerm("string expected", *i); derivation.args.push_back(s); } for (ATermIterator i(bnds); i; ++i) { string s1, s2; if (!(atMatch(m, *i) >> "" >> s1 >> s2)) throw badTerm("tuple of strings expected", *i); derivation.env[s1] = s2; } return true; } NixExpr parseNixExpr(ATerm t) { NixExpr ne; if (parseClosure(t, ne.closure)) ne.type = NixExpr::neClosure; else if (parseDerivation(t, ne.derivation)) ne.type = NixExpr::neDerivation; else throw badTerm("not a Nix expression", t); return ne; } static ATermList unparsePaths(const PathSet & paths) { ATermList l = ATempty; for (PathSet::const_iterator i = paths.begin(); i != paths.end(); i++) l = ATinsert(l, ATmake("<str>", i->c_str())); return ATreverse(l); } static ATerm unparseClosure(const Closure & closure) { ATermList roots = unparsePaths(closure.roots); ATermList elems = ATempty; for (ClosureElems::const_iterator i = closure.elems.begin(); i != closure.elems.end(); i++) elems = ATinsert(elems, ATmake("(<str>, <term>)", i->first.c_str(), unparsePaths(i->second.refs))); return ATmake("Closure(<term>, <term>)", roots, elems); } static ATerm unparseDerivation(const Derivation & derivation) { ATermList args = ATempty; for (Strings::const_iterator i = derivation.args.begin(); i != derivation.args.end(); i++) args = ATinsert(args, ATmake("<str>", i->c_str())); ATermList env = ATempty; for (StringPairs::const_iterator i = derivation.env.begin(); i != derivation.env.end(); i++) env = ATinsert(env, ATmake("(<str>, <str>)", i->first.c_str(), i->second.c_str())); return ATmake("Derive(<term>, <term>, <str>, <str>, <term>, <term>)", unparsePaths(derivation.outputs), unparsePaths(derivation.inputs), derivation.platform.c_str(), derivation.builder.c_str(), ATreverse(args), ATreverse(env)); } ATerm unparseNixExpr(const NixExpr & ne) { if (ne.type == NixExpr::neClosure) return unparseClosure(ne.closure); else if (ne.type == NixExpr::neDerivation) return unparseDerivation(ne.derivation); else abort(); }