#ifndef BOOST_WEAK_PTR_HPP_INCLUDED #define BOOST_WEAK_PTR_HPP_INCLUDED // // weak_ptr.hpp // // Copyright (c) 2001, 2002, 2003 Peter Dimov // // Permission to copy, use, modify, sell and distribute this software // is granted provided this copyright notice appears in all copies. // This software is provided "as is" without express or implied // warranty, and with no claim as to its suitability for any purpose. // // See http://www.boost.org/libs/smart_ptr/weak_ptr.htm for documentation. // #include <boost/shared_ptr.hpp> #ifdef BOOST_MSVC // moved here to work around VC++ compiler crash # pragma warning(push) # pragma warning(disable:4284) // odd return type for operator-> #endif namespace boost { template<class T> class weak_ptr { private: // Borland 5.5.1 specific workarounds typedef weak_ptr<T> this_type; public: typedef T element_type; weak_ptr(): px(0), pn() // never throws in 1.30+ { } // generated copy constructor, assignment, destructor are fine // // The "obvious" converting constructor implementation: // // template<class Y> // weak_ptr(weak_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws // { // } // // has a serious problem. // // r.px may already have been invalidated. The px(r.px) // conversion may require access to *r.px (virtual inheritance). // // It is not possible to avoid spurious access violations since // in multithreaded programs r.px may be invalidated at any point. // template<class Y> weak_ptr(weak_ptr<Y> const & r): pn(r.pn) // never throws { px = r.lock().get(); } template<class Y> weak_ptr(shared_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws { } #if !defined(BOOST_MSVC) || (BOOST_MSVC > 1200) template<class Y> weak_ptr & operator=(weak_ptr<Y> const & r) // never throws { px = r.lock().get(); pn = r.pn; return *this; } template<class Y> weak_ptr & operator=(shared_ptr<Y> const & r) // never throws { px = r.px; pn = r.pn; return *this; } #endif shared_ptr<T> lock() const // never throws { #if defined(BOOST_HAS_THREADS) // optimization: avoid throw overhead if(expired()) { return shared_ptr<element_type>(); } try { return shared_ptr<element_type>(*this); } catch(bad_weak_ptr const &) { // Q: how can we get here? // A: another thread may have invalidated r after the use_count test above. return shared_ptr<element_type>(); } #else // optimization: avoid try/catch overhead when single threaded return expired()? shared_ptr<element_type>(): shared_ptr<element_type>(*this); #endif } long use_count() const // never throws { return pn.use_count(); } bool expired() const // never throws { return pn.use_count() == 0; } void reset() // never throws in 1.30+ { this_type().swap(*this); } void swap(this_type & other) // never throws { std::swap(px, other.px); pn.swap(other.pn); } void _internal_assign(T * px2, detail::shared_count const & pn2) { px = px2; pn = pn2; } template<class Y> bool _internal_less(weak_ptr<Y> const & rhs) const { return pn < rhs.pn; } // Tasteless as this may seem, making all members public allows member templates // to work in the absence of member template friends. (Matthew Langston) #if 0 private: template<class Y> friend class weak_ptr; template<class Y> friend class shared_ptr; #endif T * px; // contained pointer detail::weak_count pn; // reference counter }; // weak_ptr template<class T, class U> inline bool operator<(weak_ptr<T> const & a, weak_ptr<U> const & b) { return a._internal_less(b); } template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b) { a.swap(b); } // deprecated, provided for backward compatibility template<class T> shared_ptr<T> make_shared(weak_ptr<T> const & r) { return r.lock(); } } // namespace boost #ifdef BOOST_MSVC # pragma warning(pop) #endif #endif // #ifndef BOOST_WEAK_PTR_HPP_INCLUDED