-- | Graphics algorithms and utils for rendering things in 2D space -------------------------------------------------------------------------------- module Xanthous.Util.Graphics ( circle , filledCircle , line , straightLine , delaunay ) where -------------------------------------------------------------------------------- import Xanthous.Prelude -------------------------------------------------------------------------------- -- https://github.com/noinia/hgeometry/issues/28 -- import qualified Algorithms.Geometry.DelaunayTriangulation.DivideAndConquer -- as Geometry import qualified Algorithms.Geometry.DelaunayTriangulation.Naive as Geometry import qualified Algorithms.Geometry.DelaunayTriangulation.Types as Geometry import Codec.Picture (imagePixels) import qualified Data.Geometry.Point as Geometry import Data.Ext ((:+)(..)) import Data.List (unfoldr) import Data.List.NonEmpty (NonEmpty) import Data.Ix (range, Ix) import Data.Word (Word8) import qualified Graphics.Rasterific as Raster import Graphics.Rasterific hiding (circle, line, V2(..)) import Graphics.Rasterific.Texture (uniformTexture) import Linear.V2 -------------------------------------------------------------------------------- -- | Generate a circle centered at the given point and with the given radius -- using the . -- -- Code taken from circle :: (Num i, Ord i) => (i, i) -- ^ center -> i -- ^ radius -> [(i, i)] circle (x₀, y₀) radius -- Four initial points, plus the generated points = (x₀, y₀ + radius) : (x₀, y₀ - radius) : (x₀ + radius, y₀) : (x₀ - radius, y₀) : points where -- Creates the (x, y) octet offsets, then maps them to absolute points in all octets. points = concatMap generatePoints $ unfoldr step initialValues generatePoints (x, y) = [ (x₀ `xop` x', y₀ `yop` y') | (x', y') <- [(x, y), (y, x)] , xop <- [(+), (-)] , yop <- [(+), (-)] ] initialValues = (1 - radius, 1, (-2) * radius, 0, radius) step (f, ddf_x, ddf_y, x, y) | x >= y = Nothing | otherwise = Just ((x', y'), (f', ddf_x', ddf_y', x', y')) where (f', ddf_y', y') | f >= 0 = (f + ddf_y' + ddf_x', ddf_y + 2, y - 1) | otherwise = (f + ddf_x, ddf_y, y) ddf_x' = ddf_x + 2 x' = x + 1 -- | Generate a *filled* circle centered at the given point and with the given -- radius using the Rasterific package. Note that since this uses a different -- implementation, this is not a strict superset of the 'circle' function -- (unfortunately - would like to make that not the case!) filledCircle :: (Num i, Integral i, Ix i) => (i, i) -- ^ center -> i -- ^ radius -> [(i, i)] filledCircle (ox, oy) radius = pointsFromRaster (ox + radius) (oy + radius) $ fill $ Raster.circle (Raster.V2 (fromIntegral ox) (fromIntegral oy)) $ fromIntegral radius -- showCells . fromPoints . NE.fromList $ filledCircle (15, 15) 7 -- pointsFromRaster :: (Num i, Integral i, Ix i) -- => i -- ^ width -- -> i -- ^ height -- -> _ -- -> [(i, i)] pointsFromRaster :: (Integral a, Integral b, Ix a, Ix b) => a -> b -> Drawing Word8 () -> [(a, b)] pointsFromRaster w h raster = map snd $ filter ((== 1) . fst) $ zip pixels $ range ((1, 1), (w, h)) where pixels = toListOf imagePixels $ renderDrawing @Word8 (fromIntegral w) (fromIntegral h) 0 $ withTexture (uniformTexture 1) raster -- | Draw a line between two points using Bresenham's line drawing algorithm -- -- Code taken from line :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)] line pa@(xa, ya) pb@(xb, yb) = (if maySwitch pa < maySwitch pb then id else reverse) points where points = map maySwitch . unfoldr go $ (x₁, y₁, 0) steep = abs (yb - ya) > abs (xb - xa) maySwitch = if steep then swap else id [(x₁, y₁), (x₂, y₂)] = sort [maySwitch pa, maySwitch pb] δx = x₂ - x₁ δy = abs (y₂ - y₁) ystep = if y₁ < y₂ then 1 else -1 go (xTemp, yTemp, err) | xTemp > x₂ = Nothing | otherwise = Just ((xTemp, yTemp), (xTemp + 1, newY, newError)) where tempError = err + δy (newY, newError) = if (2 * tempError) >= δx then (yTemp + ystep, tempError - δx) else (yTemp, tempError) straightLine :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)] straightLine pa@(xa, _) pb@(_, yb) = line pa midpoint ++ line midpoint pb where midpoint = (xa, yb) delaunay :: (Ord n, Fractional n) => NonEmpty (V2 n, p) -> [((V2 n, p), (V2 n, p))] delaunay = map (over both fromPoint) . Geometry.triangulationEdges . Geometry.delaunayTriangulation . map toPoint where toPoint (V2 px py, pid) = Geometry.Point2 px py :+ pid fromPoint (Geometry.Point2 px py :+ pid) = (V2 px py, pid)