
Where does your compiler come from?

Vincent Ambo
2018-03-13

Norwegian Unix User Group



Introduction



Chicken and egg

Self-hosted compilers are often built using themselves, for
example:

• C-family compilers bootstrap themselves & each other
• (Some!) Common Lisp compilers can bootstrap each

other
• rustc bootstraps itself with a previous version
• ... same for many other languages!

1



Chicken, egg and ... lizard?

It’s not just compilers: Languages have runtimes, too.

• JVM is implemented in C++
• Erlang-VM is C
• Haskell runtime is C

... we can’t ever get away from C, can we?

2



Trusting Trust

Could this be exploited?

3



Short interlude: A quine

((lambda (x) (list x (list 'quote x)))
'(lambda (x) (list x (list 'quote x))))

4



Short interlude: Quine Relay

5



Trusting Trust

An attack described by Ken Thompson in 1983:

1. Modify a compiler to detect when it’s compiling itself.
2. Let the modification insert itself into the new compiler.
3. Add arbitrary attack code to the modification.
4. Optional! Remove the attack from the source after

compilation.

6



Damage potential?

Let your imagination run wild!

7



Countermeasures



Diverse Double-Compiling

Assume we have:

• Target language compilers A and T
• The source code of A: SA

8



Diverse Double-Compiling

Apply the first stage (functional equivalence):

• X = A(SA)

• Y = T (SA)

Apply the second stage (bit-for-bit equivalence):

• V = X(SA)

• W = Y (SA)

Now we have a new problem: Reproducibility!

9



Reproducibility

Bit-for-bit equivalent output is hard, for example:

• Timestamps in output artifacts
• Non-deterministic linking order in concurrent builds
• Non-deterministic VM & memory states in outputs
• Randomness in builds (sic!)

10



Reproducibility

Without reproducibility, we can never trust that any shipped
binary matches the source code!

11



(Partial) State of the Union



The Desired State

1. Full-source bootstrap!
2. All packages reproducible!

12



Bootstrapping Debian

• Sparse information on the Debian-wiki
• Bootstrapping discussions mostly resolve around new

architectures
• GCC is compiled by depending on previous versions of

GCC

13



Reproducing Debian

Debian has a very active effort for reproducible builds:

• Organised information about reproducibility status
• Over 90% reproducibility in Debian package base!

14



Short interlude: Nix

15



Short interlude: Nix

16



Short interlude: Nix

17



Bootstrapping NixOS

Nix evaluation can not recurse forever: The bootstrap can not
simply depend on a previous GCC.

Workaround: bootstrap-tools tarball from a previous binary
cache is fetched and used.

An unfortunate magic binary blob ...

18



Reproducing NixOS

Not all reproducibility patches have been ported from Debian.

However: Builds are fully repeatable via the Nix fundamentals!

19



Future Developments



Bootstrappable: stage0

Hand-rolled “Cthulhu’s Path to Madness” hex-programs:

• No non-auditable binary blobs
• Aims for understandability by 70% of programmers
• End goal is a full-source bootstrap of GCC

20



Bootstrappable: MES

Bootstrapping the “Maxwell Equations of Software”:

• Minimal C-compiler written in Scheme
• Minimal Scheme-interpreter (currently in C, but intended

to be rewritten in stage0 macros)
• End goal is full-source bootstrap of the entire GuixSD

21



Other platforms

• Nix for Darwin is actively maintained
• F-Droid Android repository works towards fully

reproducible builds of (open) Android software
• Mobile devices (phones, tablets, etc.) are a lost cause at

the moment

22



Thanks!

Resources:

• bootstrappable.org
• reproducible-builds.org

@tazjin | mail@tazj.in

23


	Introduction
	Countermeasures
	(Partial) State of the Union
	Future Developments

