// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #pragma once #include #include #include namespace immer { template class vector; template class flex_vector_transient; /*! * Immutable sequential container supporting both random access, * structural sharing and efficient concatenation and slicing. * * @tparam T The type of the values to be stored in the container. * @tparam MemoryPolicy Memory management policy. See @ref * memory_policy. * * @rst * * This container is very similar to `vector`_ but also supports * :math:`O(log(size))` *concatenation*, *slicing* and *insertion* at * any point. Its performance characteristics are almost identical * until one of these operations is performed. After that, * performance is degraded by a constant factor that usually oscilates * in the range :math:`[1, 2)` depending on the operation and the * amount of flexible operations that have been performed. * * .. tip:: A `vector`_ can be converted to a `flex_vector`_ in * constant time without any allocation. This is so because the * internal structure of a *vector* is a strict subset of the * internal structure of a *flexible vector*. You can take * advantage of this property by creating normal vectors as long as * the flexible operations are not needed, and convert later in * your processing pipeline once and if these are needed. * * @endrst */ template > class flex_vector { using impl_t = detail::rbts::rrbtree; using move_t = std::integral_constant; public: static constexpr auto bits = B; static constexpr auto bits_leaf = BL; using memory_policy = MemoryPolicy; using value_type = T; using reference = const T&; using size_type = detail::rbts::size_t; using difference_type = std::ptrdiff_t; using const_reference = const T&; using iterator = detail::rbts::rrbtree_iterator; using const_iterator = iterator; using reverse_iterator = std::reverse_iterator; using transient_type = flex_vector_transient; /*! * Default constructor. It creates a flex_vector of `size() == 0`. * It does not allocate memory and its complexity is @f$ O(1) @f$. */ flex_vector() = default; /*! * Constructs a flex_vector containing the elements in `values`. */ flex_vector(std::initializer_list values) : impl_{impl_t::from_initializer_list(values)} {} /*! * Constructs a flex_vector containing the elements in the range * defined by the input iterator `first` and range sentinel `last`. */ template , bool> = true> flex_vector(Iter first, Sent last) : impl_{impl_t::from_range(first, last)} {} /*! * Constructs a vector containing the element `val` repeated `n` * times. */ flex_vector(size_type n, T v = {}) : impl_{impl_t::from_fill(n, v)} {} /*! * Default constructor. It creates a flex_vector with the same * contents as `v`. It does not allocate memory and is * @f$ O(1) @f$. */ flex_vector(vector v) : impl_{v.impl_.size, v.impl_.shift, v.impl_.root->inc(), v.impl_.tail->inc()} {} /*! * Returns an iterator pointing at the first element of the * collection. It does not allocate memory and its complexity is * @f$ O(1) @f$. */ IMMER_NODISCARD iterator begin() const { return {impl_}; } /*! * Returns an iterator pointing just after the last element of the * collection. It does not allocate and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD iterator end() const { return {impl_, typename iterator::end_t{}}; } /*! * Returns an iterator that traverses the collection backwards, * pointing at the first element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rbegin() const { return reverse_iterator{end()}; } /*! * Returns an iterator that traverses the collection backwards, * pointing after the last element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rend() const { return reverse_iterator{begin()}; } /*! * Returns the number of elements in the container. It does * not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD size_type size() const { return impl_.size; } /*! * Returns `true` if there are no elements in the container. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD bool empty() const { return impl_.size == 0; } /*! * Access the last element. */ IMMER_NODISCARD const T& back() const { return impl_.back(); } /*! * Access the first element. */ IMMER_NODISCARD const T& front() const { return impl_.front(); } /*! * Returns a `const` reference to the element at position `index`. * It is undefined when @f$ 0 index \geq size() @f$. It does not * allocate memory and its complexity is *effectively* @f$ O(1) * @f$. */ IMMER_NODISCARD reference operator[](size_type index) const { return impl_.get(index); } /*! * Returns a `const` reference to the element at position * `index`. It throws an `std::out_of_range` exception when @f$ * index \geq size() @f$. It does not allocate memory and its * complexity is *effectively* @f$ O(1) @f$. */ reference at(size_type index) const { return impl_.get_check(index); } /*! * Returns whether the vectors are equal. */ IMMER_NODISCARD bool operator==(const flex_vector& other) const { return impl_.equals(other.impl_); } IMMER_NODISCARD bool operator!=(const flex_vector& other) const { return !(*this == other); } /*! * Returns a flex_vector with `value` inserted at the end. It may * allocate memory and its complexity is *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: push-back/start * :end-before: push-back/end * * @endrst */ IMMER_NODISCARD flex_vector push_back(value_type value) const& { return impl_.push_back(std::move(value)); } IMMER_NODISCARD decltype(auto) push_back(value_type value) && { return push_back_move(move_t{}, std::move(value)); } /*! * Returns a flex_vector with `value` inserted at the frony. It may * allocate memory and its complexity is @f$ O(log(size)) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: push-front/start * :end-before: push-front/end * * @endrst */ IMMER_NODISCARD flex_vector push_front(value_type value) const { return flex_vector{}.push_back(value) + *this; } /*! * Returns a flex_vector containing value `value` at position `index`. * Undefined for `index >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: set/start * :end-before: set/end * * @endrst */ IMMER_NODISCARD flex_vector set(size_type index, value_type value) const& { return impl_.assoc(index, std::move(value)); } IMMER_NODISCARD decltype(auto) set(size_type index, value_type value) && { return set_move(move_t{}, index, std::move(value)); } /*! * Returns a vector containing the result of the expression * `fn((*this)[idx])` at position `idx`. * Undefined for `index >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: update/start * :end-before: update/end * * @endrst */ template IMMER_NODISCARD flex_vector update(size_type index, FnT&& fn) const& { return impl_.update(index, std::forward(fn)); } template IMMER_NODISCARD decltype(auto) update(size_type index, FnT&& fn) && { return update_move(move_t{}, index, std::forward(fn)); } /*! * Returns a vector containing only the first `min(elems, size())` * elements. It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: take/start * :end-before: take/end * * @endrst */ IMMER_NODISCARD flex_vector take(size_type elems) const& { return impl_.take(elems); } IMMER_NODISCARD decltype(auto) take(size_type elems) && { return take_move(move_t{}, elems); } /*! * Returns a vector without the first `min(elems, size())` * elements. It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: drop/start * :end-before: drop/end * * @endrst */ IMMER_NODISCARD flex_vector drop(size_type elems) const& { return impl_.drop(elems); } IMMER_NODISCARD decltype(auto) drop(size_type elems) && { return drop_move(move_t{}, elems); } /*! * Concatenation operator. Returns a flex_vector with the contents * of `l` followed by those of `r`. It may allocate memory * and its complexity is @f$ O(log(max(size_r, size_l))) @f$ * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: concat/start * :end-before: concat/end * * @endrst */ IMMER_NODISCARD friend flex_vector operator+(const flex_vector& l, const flex_vector& r) { return l.impl_.concat(r.impl_); } IMMER_NODISCARD friend decltype(auto) operator+(flex_vector&& l, const flex_vector& r) { return concat_move(move_t{}, std::move(l), r); } IMMER_NODISCARD friend decltype(auto) operator+(const flex_vector& l, flex_vector&& r) { return concat_move(move_t{}, l, std::move(r)); } IMMER_NODISCARD friend decltype(auto) operator+(flex_vector&& l, flex_vector&& r) { return concat_move(move_t{}, std::move(l), std::move(r)); } /*! * Returns a flex_vector with the `value` inserted at index * `pos`. It may allocate memory and its complexity is @f$ * O(log(size)) @f$ * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: insert/start * :end-before: insert/end * * @endrst */ IMMER_NODISCARD flex_vector insert(size_type pos, T value) const& { return take(pos).push_back(std::move(value)) + drop(pos); } IMMER_NODISCARD decltype(auto) insert(size_type pos, T value) && { using std::move; auto rs = drop(pos); return std::move(*this).take(pos).push_back(std::move(value)) + std::move(rs); } IMMER_NODISCARD flex_vector insert(size_type pos, flex_vector value) const& { return take(pos) + std::move(value) + drop(pos); } IMMER_NODISCARD decltype(auto) insert(size_type pos, flex_vector value) && { using std::move; auto rs = drop(pos); return std::move(*this).take(pos) + std::move(value) + std::move(rs); } /*! * Returns a flex_vector without the element at index `pos`. It * may allocate memory and its complexity is @f$ O(log(size)) @f$ * * @rst * * **Example** * .. literalinclude:: ../example/flex-vector/flex-vector.cpp * :language: c++ * :dedent: 8 * :start-after: erase/start * :end-before: erase/end * * @endrst */ IMMER_NODISCARD flex_vector erase(size_type pos) const& { return take(pos) + drop(pos + 1); } IMMER_NODISCARD decltype(auto) erase(size_type pos) && { auto rs = drop(pos + 1); return std::move(*this).take(pos) + std::move(rs); } IMMER_NODISCARD flex_vector erase(size_type pos, size_type lpos) const& { return lpos > pos ? take(pos) + drop(lpos) : *this; } IMMER_NODISCARD decltype(auto) erase(size_type pos, size_type lpos) && { if (lpos > pos) { auto rs = drop(lpos); return std::move(*this).take(pos) + std::move(rs); } else { return std::move(*this); } } /*! * Returns an @a transient form of this container, an * `immer::flex_vector_transient`. */ IMMER_NODISCARD transient_type transient() const& { return transient_type{impl_}; } IMMER_NODISCARD transient_type transient() && { return transient_type{std::move(impl_)}; } // Semi-private const impl_t& impl() const { return impl_; } #if IMMER_DEBUG_PRINT void debug_print(std::ostream& out = std::cerr) const { impl_.debug_print(out); } #endif private: friend transient_type; flex_vector(impl_t impl) : impl_(std::move(impl)) { #if IMMER_DEBUG_PRINT // force the compiler to generate debug_print, so we can call // it from a debugger [](volatile auto) {}(&flex_vector::debug_print); #endif } flex_vector&& push_back_move(std::true_type, value_type value) { impl_.push_back_mut({}, std::move(value)); return std::move(*this); } flex_vector push_back_move(std::false_type, value_type value) { return impl_.push_back(std::move(value)); } flex_vector&& set_move(std::true_type, size_type index, value_type value) { impl_.assoc_mut({}, index, std::move(value)); return std::move(*this); } flex_vector set_move(std::false_type, size_type index, value_type value) { return impl_.assoc(index, std::move(value)); } template flex_vector&& update_move(std::true_type, size_type index, Fn&& fn) { impl_.update_mut({}, index, std::forward(fn)); return std::move(*this); } template flex_vector update_move(std::false_type, size_type index, Fn&& fn) { return impl_.update(index, std::forward(fn)); } flex_vector&& take_move(std::true_type, size_type elems) { impl_.take_mut({}, elems); return std::move(*this); } flex_vector take_move(std::false_type, size_type elems) { return impl_.take(elems); } flex_vector&& drop_move(std::true_type, size_type elems) { impl_.drop_mut({}, elems); return std::move(*this); } flex_vector drop_move(std::false_type, size_type elems) { return impl_.drop(elems); } static flex_vector&& concat_move(std::true_type, flex_vector&& l, const flex_vector& r) { concat_mut_l(l.impl_, {}, r.impl_); return std::move(l); } static flex_vector&& concat_move(std::true_type, const flex_vector& l, flex_vector&& r) { concat_mut_r(l.impl_, r.impl_, {}); return std::move(r); } static flex_vector&& concat_move(std::true_type, flex_vector&& l, flex_vector&& r) { concat_mut_lr_l(l.impl_, {}, r.impl_, {}); return std::move(l); } static flex_vector concat_move(std::false_type, const flex_vector& l, const flex_vector& r) { return l.impl_.concat(r.impl_); } impl_t impl_ = impl_t::empty(); }; } // namespace immer