// // immer: immutable data structures for C++ // Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente // // This software is distributed under the Boost Software License, Version 1.0. // See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt // #pragma once #include <immer/detail/arrays/with_capacity.hpp> #include <immer/memory_policy.hpp> namespace immer { template <typename T, typename MemoryPolicy> class array; /*! * Mutable version of `immer::array`. * * @rst * * Refer to :doc:`transients` to learn more about when and how to use * the mutable versions of immutable containers. * * @endrst */ template <typename T, typename MemoryPolicy = default_memory_policy> class array_transient : MemoryPolicy::transience_t::owner { using impl_t = detail::arrays::with_capacity<T, MemoryPolicy>; using impl_no_capacity_t = detail::arrays::no_capacity<T, MemoryPolicy>; using owner_t = typename MemoryPolicy::transience_t::owner; public: using value_type = T; using reference = const T&; using size_type = std::size_t; using difference_type = std::ptrdiff_t; using const_reference = const T&; using iterator = const T*; using const_iterator = iterator; using reverse_iterator = std::reverse_iterator<iterator>; using memory_policy = MemoryPolicy; using persistent_type = array<T, MemoryPolicy>; /*! * Default constructor. It creates a mutable array of `size() == * 0`. It does not allocate memory and its complexity is * @f$ O(1) @f$. */ array_transient() = default; /*! * Returns an iterator pointing at the first element of the * collection. It does not allocate memory and its complexity is * @f$ O(1) @f$. */ IMMER_NODISCARD iterator begin() const { return impl_.data(); } /*! * Returns an iterator pointing just after the last element of the * collection. It does not allocate and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD iterator end() const { return impl_.data() + impl_.size; } /*! * Returns an iterator that traverses the collection backwards, * pointing at the first element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rbegin() const { return reverse_iterator{end()}; } /*! * Returns an iterator that traverses the collection backwards, * pointing after the last element of the reversed collection. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD reverse_iterator rend() const { return reverse_iterator{begin()}; } /*! * Returns the number of elements in the container. It does * not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD std::size_t size() const { return impl_.size; } /*! * Returns `true` if there are no elements in the container. It * does not allocate memory and its complexity is @f$ O(1) @f$. */ IMMER_NODISCARD bool empty() const { return impl_.size == 0; } /*! * Access the raw data. */ IMMER_NODISCARD const T* data() const { return impl_.data(); } /*! * Provide mutable access to the raw underlaying data. */ IMMER_NODISCARD T* data_mut() { return impl_.data_mut(*this); } /*! * Access the last element. */ IMMER_NODISCARD const T& back() const { return data()[size() - 1]; } /*! * Access the first element. */ IMMER_NODISCARD const T& front() const { return data()[0]; } /*! * Returns a `const` reference to the element at position `index`. * It is undefined when @f$ 0 index \geq size() @f$. It does not * allocate memory and its complexity is *effectively* @f$ O(1) * @f$. */ reference operator[](size_type index) const { return impl_.get(index); } /*! * Returns a `const` reference to the element at position * `index`. It throws an `std::out_of_range` exception when @f$ * index \geq size() @f$. It does not allocate memory and its * complexity is *effectively* @f$ O(1) @f$. */ reference at(size_type index) const { return impl_.get_check(index); } /*! * Inserts `value` at the end. It may allocate memory and its * complexity is *effectively* @f$ O(1) @f$. */ void push_back(value_type value) { impl_.push_back_mut(*this, std::move(value)); } /*! * Sets to the value `value` at position `idx`. * Undefined for `index >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. */ void set(size_type index, value_type value) { impl_.assoc_mut(*this, index, std::move(value)); } /*! * Updates the array to contain the result of the expression * `fn((*this)[idx])` at position `idx`. * Undefined for `0 >= size()`. * It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. */ template <typename FnT> void update(size_type index, FnT&& fn) { impl_.update_mut(*this, index, std::forward<FnT>(fn)); } /*! * Resizes the array to only contain the first `min(elems, size())` * elements. It may allocate memory and its complexity is * *effectively* @f$ O(1) @f$. */ void take(size_type elems) { impl_.take_mut(*this, elems); } /*! * Returns an @a immutable form of this container, an * `immer::array`. */ IMMER_NODISCARD persistent_type persistent() & { this->owner_t::operator=(owner_t{}); return persistent_type{impl_}; } IMMER_NODISCARD persistent_type persistent() && { return persistent_type{std::move(impl_)}; } private: friend persistent_type; array_transient(impl_t impl) : impl_(std::move(impl)) {} impl_t impl_ = impl_t::empty(); }; } // namespace immer