// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: time.h // ----------------------------------------------------------------------------- // // This header file defines abstractions for computing with absolute points // in time, durations of time, and formatting and parsing time within a given // time zone. The following abstractions are defined: // // * `absl::Time` defines an absolute, specific instance in time // * `absl::Duration` defines a signed, fixed-length span of time // * `absl::TimeZone` defines geopolitical time zone regions (as collected // within the IANA Time Zone database (https://www.iana.org/time-zones)). // // Example: // // absl::TimeZone nyc; // // // LoadTimeZone may fail so it's always better to check for success. // if (!absl::LoadTimeZone("America/New_York", &nyc)) { // // handle error case // } // // // My flight leaves NYC on Jan 2, 2017 at 03:04:05 // absl::Time takeoff = absl::FromDateTime(2017, 1, 2, 3, 4, 5, nyc); // absl::Duration flight_duration = absl::Hours(21) + absl::Minutes(35); // absl::Time landing = takeoff + flight_duration; // // absl::TimeZone syd; // if (!absl::LoadTimeZone("Australia/Sydney", &syd)) { // // handle error case // } // std::string s = absl::FormatTime( // "My flight will land in Sydney on %Y-%m-%d at %H:%M:%S", // landing, syd); // #ifndef ABSL_TIME_TIME_H_ #define ABSL_TIME_TIME_H_ #if !defined(_WIN32) #include <sys/time.h> #else #include <winsock2.h> #endif #include <chrono> // NOLINT(build/c++11) #include <cstdint> #include <ctime> #include <ostream> #include <string> #include <type_traits> #include <utility> #include "absl/base/port.h" // Needed for string vs std::string #include "absl/time/internal/cctz/include/cctz/time_zone.h" namespace absl { class Duration; // Defined below class Time; // Defined below class TimeZone; // Defined below namespace time_internal { int64_t IDivDuration(bool satq, Duration num, Duration den, Duration* rem); constexpr Time FromUnixDuration(Duration d); constexpr Duration ToUnixDuration(Time t); constexpr int64_t GetRepHi(Duration d); constexpr uint32_t GetRepLo(Duration d); constexpr Duration MakeDuration(int64_t hi, uint32_t lo); constexpr Duration MakeDuration(int64_t hi, int64_t lo); constexpr int64_t kTicksPerNanosecond = 4; constexpr int64_t kTicksPerSecond = 1000 * 1000 * 1000 * kTicksPerNanosecond; template <typename T> using IsFloatingPoint = typename std::enable_if<std::is_floating_point<T>::value, int>::type; } // namespace time_internal // Duration // // The `absl::Duration` class represents a signed, fixed-length span of time. // A `Duration` is generated using a unit-specific factory function, or is // the result of subtracting one `absl::Time` from another. Durations behave // like unit-safe integers and they support all the natural integer-like // arithmetic operations. Arithmetic overflows and saturates at +/- infinity. // `Duration` should be passed by value rather than const reference. // // Factory functions `Nanoseconds()`, `Microseconds()`, `Milliseconds()`, // `Seconds()`, `Minutes()`, `Hours()` and `InfiniteDuration()` allow for // creation of constexpr `Duration` values // // Examples: // // constexpr absl::Duration ten_ns = absl::Nanoseconds(10); // constexpr absl::Duration min = absl::Minutes(1); // constexpr absl::Duration hour = absl::Hours(1); // absl::Duration dur = 60 * min; // dur == hour // absl::Duration half_sec = absl::Milliseconds(500); // absl::Duration quarter_sec = 0.25 * absl::Seconds(1); // // `Duration` values can be easily converted to an integral number of units // using the division operator. // // Example: // // constexpr absl::Duration dur = absl::Milliseconds(1500); // int64_t ns = dur / absl::Nanoseconds(1); // ns == 1500000000 // int64_t ms = dur / absl::Milliseconds(1); // ms == 1500 // int64_t sec = dur / absl::Seconds(1); // sec == 1 (subseconds truncated) // int64_t min = dur / absl::Minutes(1); // min == 0 // // See the `IDivDuration()` and `FDivDuration()` functions below for details on // how to access the fractional parts of the quotient. // // Alternatively, conversions can be performed using helpers such as // `ToInt64Microseconds()` and `ToDoubleSeconds()`. class Duration { public: // Value semantics. constexpr Duration() : rep_hi_(0), rep_lo_(0) {} // zero-length duration // Compound assignment operators. Duration& operator+=(Duration d); Duration& operator-=(Duration d); Duration& operator*=(int64_t r); Duration& operator*=(double r); Duration& operator/=(int64_t r); Duration& operator/=(double r); Duration& operator%=(Duration rhs); // Overloads that forward to either the int64_t or double overloads above. template <typename T> Duration& operator*=(T r) { int64_t x = r; return *this *= x; } template <typename T> Duration& operator/=(T r) { int64_t x = r; return *this /= x; } Duration& operator*=(float r) { return *this *= static_cast<double>(r); } Duration& operator/=(float r) { return *this /= static_cast<double>(r); } private: friend constexpr int64_t time_internal::GetRepHi(Duration d); friend constexpr uint32_t time_internal::GetRepLo(Duration d); friend constexpr Duration time_internal::MakeDuration(int64_t hi, uint32_t lo); constexpr Duration(int64_t hi, uint32_t lo) : rep_hi_(hi), rep_lo_(lo) {} int64_t rep_hi_; uint32_t rep_lo_; }; // Relational Operators constexpr bool operator<(Duration lhs, Duration rhs); constexpr bool operator>(Duration lhs, Duration rhs) { return rhs < lhs; } constexpr bool operator>=(Duration lhs, Duration rhs) { return !(lhs < rhs); } constexpr bool operator<=(Duration lhs, Duration rhs) { return !(rhs < lhs); } constexpr bool operator==(Duration lhs, Duration rhs); constexpr bool operator!=(Duration lhs, Duration rhs) { return !(lhs == rhs); } // Additive Operators constexpr Duration operator-(Duration d); inline Duration operator+(Duration lhs, Duration rhs) { return lhs += rhs; } inline Duration operator-(Duration lhs, Duration rhs) { return lhs -= rhs; } // Multiplicative Operators template <typename T> inline Duration operator*(Duration lhs, T rhs) { return lhs *= rhs; } template <typename T> inline Duration operator*(T lhs, Duration rhs) { return rhs *= lhs; } template <typename T> inline Duration operator/(Duration lhs, T rhs) { return lhs /= rhs; } inline int64_t operator/(Duration lhs, Duration rhs) { return time_internal::IDivDuration(true, lhs, rhs, &lhs); // trunc towards zero } inline Duration operator%(Duration lhs, Duration rhs) { return lhs %= rhs; } // IDivDuration() // // Divides a numerator `Duration` by a denominator `Duration`, returning the // quotient and remainder. The remainder always has the same sign as the // numerator. The returned quotient and remainder respect the identity: // // numerator = denominator * quotient + remainder // // Returned quotients are capped to the range of `int64_t`, with the difference // spilling into the remainder to uphold the above identity. This means that the // remainder returned could differ from the remainder returned by // `Duration::operator%` for huge quotients. // // See also the notes on `InfiniteDuration()` below regarding the behavior of // division involving zero and infinite durations. // // Example: // // constexpr absl::Duration a = // absl::Seconds(std::numeric_limits<int64_t>::max()); // big // constexpr absl::Duration b = absl::Nanoseconds(1); // small // // absl::Duration rem = a % b; // // rem == absl::ZeroDuration() // // // Here, q would overflow int64_t, so rem accounts for the difference. // int64_t q = absl::IDivDuration(a, b, &rem); // // q == std::numeric_limits<int64_t>::max(), rem == a - b * q inline int64_t IDivDuration(Duration num, Duration den, Duration* rem) { return time_internal::IDivDuration(true, num, den, rem); // trunc towards zero } // FDivDuration() // // Divides a `Duration` numerator into a fractional number of units of a // `Duration` denominator. // // See also the notes on `InfiniteDuration()` below regarding the behavior of // division involving zero and infinite durations. // // Example: // // double d = absl::FDivDuration(absl::Milliseconds(1500), absl::Seconds(1)); // // d == 1.5 double FDivDuration(Duration num, Duration den); // ZeroDuration() // // Returns a zero-length duration. This function behaves just like the default // constructor, but the name helps make the semantics clear at call sites. constexpr Duration ZeroDuration() { return Duration(); } // AbsDuration() // // Returns the absolute value of a duration. inline Duration AbsDuration(Duration d) { return (d < ZeroDuration()) ? -d : d; } // Trunc() // // Truncates a duration (toward zero) to a multiple of a non-zero unit. // // Example: // // absl::Duration d = absl::Nanoseconds(123456789); // absl::Duration a = absl::Trunc(d, absl::Microseconds(1)); // 123456us Duration Trunc(Duration d, Duration unit); // Floor() // // Floors a duration using the passed duration unit to its largest value not // greater than the duration. // // Example: // // absl::Duration d = absl::Nanoseconds(123456789); // absl::Duration b = absl::Floor(d, absl::Microseconds(1)); // 123456us Duration Floor(Duration d, Duration unit); // Ceil() // // Returns the ceiling of a duration using the passed duration unit to its // smallest value not less than the duration. // // Example: // // absl::Duration d = absl::Nanoseconds(123456789); // absl::Duration c = absl::Ceil(d, absl::Microseconds(1)); // 123457us Duration Ceil(Duration d, Duration unit); // Nanoseconds() // Microseconds() // Milliseconds() // Seconds() // Minutes() // Hours() // // Factory functions for constructing `Duration` values from an integral number // of the unit indicated by the factory function's name. // // Note: no "Days()" factory function exists because "a day" is ambiguous. Civil // days are not always 24 hours long, and a 24-hour duration often does not // correspond with a civil day. If a 24-hour duration is needed, use // `absl::Hours(24)`. // // // Example: // // absl::Duration a = absl::Seconds(60); // absl::Duration b = absl::Minutes(1); // b == a constexpr Duration Nanoseconds(int64_t n); constexpr Duration Microseconds(int64_t n); constexpr Duration Milliseconds(int64_t n); constexpr Duration Seconds(int64_t n); constexpr Duration Minutes(int64_t n); constexpr Duration Hours(int64_t n); // Factory overloads for constructing `Duration` values from a floating-point // number of the unit indicated by the factory function's name. These functions // exist for convenience, but they are not as efficient as the integral // factories, which should be preferred. // // Example: // auto a = absl::Seconds(1.5); // OK // auto b = absl::Milliseconds(1500); // BETTER template <typename T, time_internal::IsFloatingPoint<T> = 0> Duration Nanoseconds(T n) { return n * Nanoseconds(1); } template <typename T, time_internal::IsFloatingPoint<T> = 0> Duration Microseconds(T n) { return n * Microseconds(1); } template <typename T, time_internal::IsFloatingPoint<T> = 0> Duration Milliseconds(T n) { return n * Milliseconds(1); } template <typename T, time_internal::IsFloatingPoint<T> = 0> Duration Seconds(T n) { return n * Seconds(1); } template <typename T, time_internal::IsFloatingPoint<T> = 0> Duration Minutes(T n) { return n * Minutes(1); } template <typename T, time_internal::IsFloatingPoint<T> = 0> Duration Hours(T n) { return n * Hours(1); } // ToInt64Nanoseconds() // ToInt64Microseconds() // ToInt64Milliseconds() // ToInt64Seconds() // ToInt64Minutes() // ToInt64Hours() // // Helper functions that convert a Duration to an integral count of the // indicated unit. These functions are shorthand for the `IDivDuration()` // function above; see its documentation for details about overflow, etc. // // Example: // // absl::Duration d = absl::Milliseconds(1500); // int64_t isec = absl::ToInt64Seconds(d); // isec == 1 int64_t ToInt64Nanoseconds(Duration d); int64_t ToInt64Microseconds(Duration d); int64_t ToInt64Milliseconds(Duration d); int64_t ToInt64Seconds(Duration d); int64_t ToInt64Minutes(Duration d); int64_t ToInt64Hours(Duration d); // ToDoubleNanoSeconds() // ToDoubleMicroseconds() // ToDoubleMilliseconds() // ToDoubleSeconds() // ToDoubleMinutes() // ToDoubleHours() // // Helper functions that convert a Duration to a floating point count of the // indicated unit. These functions are shorthand for the `FDivDuration()` // function above; see its documentation for details about overflow, etc. // // Example: // // absl::Duration d = absl::Milliseconds(1500); // double dsec = absl::ToDoubleSeconds(d); // dsec == 1.5 double ToDoubleNanoseconds(Duration d); double ToDoubleMicroseconds(Duration d); double ToDoubleMilliseconds(Duration d); double ToDoubleSeconds(Duration d); double ToDoubleMinutes(Duration d); double ToDoubleHours(Duration d); // FromChrono() // // Converts any of the pre-defined std::chrono durations to an absl::Duration. // // Example: // // std::chrono::milliseconds ms(123); // absl::Duration d = absl::FromChrono(ms); constexpr Duration FromChrono(const std::chrono::nanoseconds& d); constexpr Duration FromChrono(const std::chrono::microseconds& d); constexpr Duration FromChrono(const std::chrono::milliseconds& d); constexpr Duration FromChrono(const std::chrono::seconds& d); constexpr Duration FromChrono(const std::chrono::minutes& d); constexpr Duration FromChrono(const std::chrono::hours& d); // ToChronoNanoseconds() // ToChronoMicroseconds() // ToChronoMilliseconds() // ToChronoSeconds() // ToChronoMinutes() // ToChronoHours() // // Converts an absl::Duration to any of the pre-defined std::chrono durations. // If overflow would occur, the returned value will saturate at the min/max // chrono duration value instead. // // Example: // // absl::Duration d = absl::Microseconds(123); // auto x = absl::ToChronoMicroseconds(d); // auto y = absl::ToChronoNanoseconds(d); // x == y // auto z = absl::ToChronoSeconds(absl::InfiniteDuration()); // // z == std::chrono::seconds::max() std::chrono::nanoseconds ToChronoNanoseconds(Duration d); std::chrono::microseconds ToChronoMicroseconds(Duration d); std::chrono::milliseconds ToChronoMilliseconds(Duration d); std::chrono::seconds ToChronoSeconds(Duration d); std::chrono::minutes ToChronoMinutes(Duration d); std::chrono::hours ToChronoHours(Duration d); // InfiniteDuration() // // Returns an infinite `Duration`. To get a `Duration` representing negative // infinity, use `-InfiniteDuration()`. // // Duration arithmetic overflows to +/- infinity and saturates. In general, // arithmetic with `Duration` infinities is similar to IEEE 754 infinities // except where IEEE 754 NaN would be involved, in which case +/- // `InfiniteDuration()` is used in place of a "nan" Duration. // // Examples: // // constexpr absl::Duration inf = absl::InfiniteDuration(); // const absl::Duration d = ... any finite duration ... // // inf == inf + inf // inf == inf + d // inf == inf - inf // -inf == d - inf // // inf == d * 1e100 // inf == inf / 2 // 0 == d / inf // INT64_MAX == inf / d // // // Division by zero returns infinity, or INT64_MIN/MAX where appropriate. // inf == d / 0 // INT64_MAX == d / absl::ZeroDuration() // // The examples involving the `/` operator above also apply to `IDivDuration()` // and `FDivDuration()`. constexpr Duration InfiniteDuration(); // FormatDuration() // // Returns a std::string representing the duration in the form "72h3m0.5s". // Returns "inf" or "-inf" for +/- `InfiniteDuration()`. std::string FormatDuration(Duration d); // Output stream operator. inline std::ostream& operator<<(std::ostream& os, Duration d) { return os << FormatDuration(d); } // ParseDuration() // // Parses a duration std::string consisting of a possibly signed sequence of // decimal numbers, each with an optional fractional part and a unit // suffix. The valid suffixes are "ns", "us" "ms", "s", "m", and "h". // Simple examples include "300ms", "-1.5h", and "2h45m". Parses "0" as // `ZeroDuration()`. Parses "inf" and "-inf" as +/- `InfiniteDuration()`. bool ParseDuration(const std::string& dur_string, Duration* d); // Flag Support // TODO(absl-team): Remove once dependencies are removed. // ParseFlag() // bool ParseFlag(const std::string& text, Duration* dst, std::string* error); // UnparseFlag() // std::string UnparseFlag(Duration d); // Time // // An `absl::Time` represents a specific instant in time. Arithmetic operators // are provided for naturally expressing time calculations. Instances are // created using `absl::Now()` and the `absl::From*()` factory functions that // accept the gamut of other time representations. Formatting and parsing // functions are provided for conversion to and from strings. `absl::Time` // should be passed by value rather than const reference. // // `absl::Time` assumes there are 60 seconds in a minute, which means the // underlying time scales must be "smeared" to eliminate leap seconds. // See https://developers.google.com/time/smear. // // Even though `absl::Time` supports a wide range of timestamps, exercise // caution when using values in the distant past. `absl::Time` uses the // Proleptic Gregorian calendar, which extends the Gregorian calendar backward // to dates before its introduction in 1582. // See https://en.wikipedia.org/wiki/Proleptic_Gregorian_calendar // for more information. Use the ICU calendar classes to convert a date in // some other calendar (http://userguide.icu-project.org/datetime/calendar). // // Similarly, standardized time zones are a reasonably recent innovation, with // the Greenwich prime meridian being established in 1884. The TZ database // itself does not profess accurate offsets for timestamps prior to 1970. The // breakdown of future timestamps is subject to the whim of regional // governments. // // The `absl::Time` class represents an instant in time as a count of clock // ticks of some granularity (resolution) from some starting point (epoch). // // // `absl::Time` uses a resolution that is high enough to avoid loss in // precision, and a range that is wide enough to avoid overflow, when // converting between tick counts in most Google time scales (i.e., precision // of at least one nanosecond, and range +/-100 billion years). Conversions // between the time scales are performed by truncating (towards negative // infinity) to the nearest representable point. // // Examples: // // absl::Time t1 = ...; // absl::Time t2 = t1 + absl::Minutes(2); // absl::Duration d = t2 - t1; // == absl::Minutes(2) // absl::Time::Breakdown bd = t1.In(absl::LocalTimeZone()); // class Time { public: // Value semantics. // Returns the Unix epoch. However, those reading your code may not know // or expect the Unix epoch as the default value, so make your code more // readable by explicitly initializing all instances before use. // // Example: // absl::Time t = absl::UnixEpoch(); // absl::Time t = absl::Now(); // absl::Time t = absl::TimeFromTimeval(tv); // absl::Time t = absl::InfinitePast(); constexpr Time() {} // Assignment operators. Time& operator+=(Duration d) { rep_ += d; return *this; } Time& operator-=(Duration d) { rep_ -= d; return *this; } // Time::Breakdown // // The calendar and wall-clock (aka "civil time") components of an // `absl::Time` in a certain `absl::TimeZone`. This struct is not // intended to represent an instant in time. So, rather than passing // a `Time::Breakdown` to a function, pass an `absl::Time` and an // `absl::TimeZone`. struct Breakdown { int64_t year; // year (e.g., 2013) int month; // month of year [1:12] int day; // day of month [1:31] int hour; // hour of day [0:23] int minute; // minute of hour [0:59] int second; // second of minute [0:59] Duration subsecond; // [Seconds(0):Seconds(1)) if finite int weekday; // 1==Mon, ..., 7=Sun int yearday; // day of year [1:366] // Note: The following fields exist for backward compatibility // with older APIs. Accessing these fields directly is a sign of // imprudent logic in the calling code. Modern time-related code // should only access this data indirectly by way of FormatTime(). // These fields are undefined for InfiniteFuture() and InfinitePast(). int offset; // seconds east of UTC bool is_dst; // is offset non-standard? const char* zone_abbr; // time-zone abbreviation (e.g., "PST") }; // Time::In() // // Returns the breakdown of this instant in the given TimeZone. Breakdown In(TimeZone tz) const; private: friend constexpr Time time_internal::FromUnixDuration(Duration d); friend constexpr Duration time_internal::ToUnixDuration(Time t); friend constexpr bool operator<(Time lhs, Time rhs); friend constexpr bool operator==(Time lhs, Time rhs); friend Duration operator-(Time lhs, Time rhs); friend constexpr Time UniversalEpoch(); friend constexpr Time InfiniteFuture(); friend constexpr Time InfinitePast(); constexpr explicit Time(Duration rep) : rep_(rep) {} Duration rep_; }; // Relational Operators constexpr bool operator<(Time lhs, Time rhs) { return lhs.rep_ < rhs.rep_; } constexpr bool operator>(Time lhs, Time rhs) { return rhs < lhs; } constexpr bool operator>=(Time lhs, Time rhs) { return !(lhs < rhs); } constexpr bool operator<=(Time lhs, Time rhs) { return !(rhs < lhs); } constexpr bool operator==(Time lhs, Time rhs) { return lhs.rep_ == rhs.rep_; } constexpr bool operator!=(Time lhs, Time rhs) { return !(lhs == rhs); } // Additive Operators inline Time operator+(Time lhs, Duration rhs) { return lhs += rhs; } inline Time operator+(Duration lhs, Time rhs) { return rhs += lhs; } inline Time operator-(Time lhs, Duration rhs) { return lhs -= rhs; } inline Duration operator-(Time lhs, Time rhs) { return lhs.rep_ - rhs.rep_; } // UnixEpoch() // // Returns the `absl::Time` representing "1970-01-01 00:00:00.0 +0000". constexpr Time UnixEpoch() { return Time(); } // UniversalEpoch() // // Returns the `absl::Time` representing "0001-01-01 00:00:00.0 +0000", the // epoch of the ICU Universal Time Scale. constexpr Time UniversalEpoch() { // 719162 is the number of days from 0001-01-01 to 1970-01-01, // assuming the Gregorian calendar. return Time(time_internal::MakeDuration(-24 * 719162 * int64_t{3600}, 0U)); } // InfiniteFuture() // // Returns an `absl::Time` that is infinitely far in the future. constexpr Time InfiniteFuture() { return Time( time_internal::MakeDuration(std::numeric_limits<int64_t>::max(), ~0U)); } // InfinitePast() // // Returns an `absl::Time` that is infinitely far in the past. constexpr Time InfinitePast() { return Time( time_internal::MakeDuration(std::numeric_limits<int64_t>::min(), ~0U)); } // TimeConversion // // An `absl::TimeConversion` represents the conversion of year, month, day, // hour, minute, and second values (i.e., a civil time), in a particular // `absl::TimeZone`, to a time instant (an absolute time), as returned by // `absl::ConvertDateTime()`. (Subseconds must be handled separately.) // // It is possible, though, for a caller to try to convert values that // do not represent an actual or unique instant in time (due to a shift // in UTC offset in the `absl::TimeZone`, which results in a discontinuity in // the civil-time components). For example, a daylight-saving-time // transition skips or repeats civil times---in the United States, March // 13, 2011 02:15 never occurred, while November 6, 2011 01:15 occurred // twice---so requests for such times are not well-defined. // // To account for these possibilities, `absl::TimeConversion` is richer // than just a single `absl::Time`. When the civil time is skipped or // repeated, `absl::ConvertDateTime()` returns times calculated using the // pre-transition and post-transition UTC offsets, plus the transition // time itself. // // Examples: // // absl::TimeZone lax; // if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { ... } // // // A unique civil time // absl::TimeConversion jan01 = // absl::ConvertDateTime(2011, 1, 1, 0, 0, 0, lax); // // jan01.kind == TimeConversion::UNIQUE // // jan01.pre is 2011/01/01 00:00:00 -0800 // // jan01.trans is 2011/01/01 00:00:00 -0800 // // jan01.post is 2011/01/01 00:00:00 -0800 // // // A Spring DST transition, when there is a gap in civil time // absl::TimeConversion mar13 = // absl::ConvertDateTime(2011, 3, 13, 2, 15, 0, lax); // // mar13.kind == TimeConversion::SKIPPED // // mar13.pre is 2011/03/13 03:15:00 -0700 // // mar13.trans is 2011/03/13 03:00:00 -0700 // // mar13.post is 2011/03/13 01:15:00 -0800 // // // A Fall DST transition, when civil times are repeated // absl::TimeConversion nov06 = // absl::ConvertDateTime(2011, 11, 6, 1, 15, 0, lax); // // nov06.kind == TimeConversion::REPEATED // // nov06.pre is 2011/11/06 01:15:00 -0700 // // nov06.trans is 2011/11/06 01:00:00 -0800 // // nov06.post is 2011/11/06 01:15:00 -0800 // // The input month, day, hour, minute, and second values can also be // outside of their valid ranges, in which case they will be "normalized" // during the conversion. // // Example: // // // "October 32" normalizes to "November 1". // absl::TimeZone tz = absl::LocalTimeZone(); // absl::TimeConversion tc = // absl::ConvertDateTime(2013, 10, 32, 8, 30, 0, tz); // // tc.kind == TimeConversion::UNIQUE && tc.normalized == true // // tc.pre.In(tz).month == 11 && tc.pre.In(tz).day == 1 struct TimeConversion { Time pre; // time calculated using the pre-transition offset Time trans; // when the civil-time discontinuity occurred Time post; // time calculated using the post-transition offset enum Kind { UNIQUE, // the civil time was singular (pre == trans == post) SKIPPED, // the civil time did not exist REPEATED, // the civil time was ambiguous }; Kind kind; bool normalized; // input values were outside their valid ranges }; // ConvertDateTime() // // The full generality of a civil time to absl::Time conversion. TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, int min, int sec, TimeZone tz); // FromDateTime() // // A convenience wrapper for `absl::ConvertDateTime()` that simply returns the // "pre" `absl::Time`. That is, the unique result, or the instant that // is correct using the pre-transition offset (as if the transition // never happened). This is typically the answer that humans expected when // faced with non-unique times, such as near daylight-saving time transitions. // // Example: // // absl::TimeZone seattle; // if (!absl::LoadTimeZone("America/Los_Angeles", &seattle)) { ... } // absl::Time t = absl::FromDateTime(2017, 9, 26, 9, 30, 0, seattle); Time FromDateTime(int64_t year, int mon, int day, int hour, int min, int sec, TimeZone tz); // FromTM() // // Converts the `tm_year`, `tm_mon`, `tm_mday`, `tm_hour`, `tm_min`, and // `tm_sec` fields to an `absl::Time` using the given time zone. See ctime(3) // for a description of the expected values of the tm fields. IFF the indicated // time instant is not unique (see `absl::ConvertDateTime()` above), the // `tm_isdst` field is consulted to select the desired instant (`tm_isdst` > 0 // means DST, `tm_isdst` == 0 means no DST, `tm_isdst` < 0 means use the default // like `absl::FromDateTime()`). Time FromTM(const struct tm& tm, TimeZone tz); // ToTM() // // Converts the given `absl::Time` to a struct tm using the given time zone. // See ctime(3) for a description of the values of the tm fields. struct tm ToTM(Time t, TimeZone tz); // FromUnixNanos() // FromUnixMicros() // FromUnixMillis() // FromUnixSeconds() // FromTimeT() // FromUDate() // FromUniversal() // // Creates an `absl::Time` from a variety of other representations. constexpr Time FromUnixNanos(int64_t ns); constexpr Time FromUnixMicros(int64_t us); constexpr Time FromUnixMillis(int64_t ms); constexpr Time FromUnixSeconds(int64_t s); constexpr Time FromTimeT(time_t t); Time FromUDate(double udate); Time FromUniversal(int64_t universal); // ToUnixNanos() // ToUnixMicros() // ToUnixMillis() // ToUnixSeconds() // ToTimeT() // ToUDate() // ToUniversal() // // Converts an `absl::Time` to a variety of other representations. Note that // these operations round down toward negative infinity where necessary to // adjust to the resolution of the result type. Beware of possible time_t // over/underflow in ToTime{T,val,spec}() on 32-bit platforms. int64_t ToUnixNanos(Time t); int64_t ToUnixMicros(Time t); int64_t ToUnixMillis(Time t); int64_t ToUnixSeconds(Time t); time_t ToTimeT(Time t); double ToUDate(Time t); int64_t ToUniversal(Time t); // DurationFromTimespec() // DurationFromTimeval() // ToTimespec() // ToTimeval() // TimeFromTimespec() // TimeFromTimeval() // ToTimespec() // ToTimeval() // // Some APIs use a timespec or a timeval as a Duration (e.g., nanosleep(2) // and select(2)), while others use them as a Time (e.g. clock_gettime(2) // and gettimeofday(2)), so conversion functions are provided for both cases. // The "to timespec/val" direction is easily handled via overloading, but // for "from timespec/val" the desired type is part of the function name. Duration DurationFromTimespec(timespec ts); Duration DurationFromTimeval(timeval tv); timespec ToTimespec(Duration d); timeval ToTimeval(Duration d); Time TimeFromTimespec(timespec ts); Time TimeFromTimeval(timeval tv); timespec ToTimespec(Time t); timeval ToTimeval(Time t); // FromChrono() // // Converts a std::chrono::system_clock::time_point to an absl::Time. // // Example: // // auto tp = std::chrono::system_clock::from_time_t(123); // absl::Time t = absl::FromChrono(tp); // // t == absl::FromTimeT(123) Time FromChrono(const std::chrono::system_clock::time_point& tp); // ToChronoTime() // // Converts an absl::Time to a std::chrono::system_clock::time_point. If // overflow would occur, the returned value will saturate at the min/max time // point value instead. // // Example: // // absl::Time t = absl::FromTimeT(123); // auto tp = absl::ToChronoTime(t); // // tp == std::chrono::system_clock::from_time_t(123); std::chrono::system_clock::time_point ToChronoTime(Time); // RFC3339_full // RFC3339_sec // // FormatTime()/ParseTime() format specifiers for RFC3339 date/time strings, // with trailing zeros trimmed or with fractional seconds omitted altogether. // // Note that RFC3339_sec[] matches an ISO 8601 extended format for date // and time with UTC offset. extern const char RFC3339_full[]; // %Y-%m-%dT%H:%M:%E*S%Ez extern const char RFC3339_sec[]; // %Y-%m-%dT%H:%M:%S%Ez // RFC1123_full // RFC1123_no_wday // // FormatTime()/ParseTime() format specifiers for RFC1123 date/time strings. extern const char RFC1123_full[]; // %a, %d %b %E4Y %H:%M:%S %z extern const char RFC1123_no_wday[]; // %d %b %E4Y %H:%M:%S %z // FormatTime() // // Formats the given `absl::Time` in the `absl::TimeZone` according to the // provided format std::string. Uses strftime()-like formatting options, with // the following extensions: // // - %Ez - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm) // - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss) // - %E#S - Seconds with # digits of fractional precision // - %E*S - Seconds with full fractional precision (a literal '*') // - %E#f - Fractional seconds with # digits of precision // - %E*f - Fractional seconds with full precision (a literal '*') // - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999) // // Note that %E0S behaves like %S, and %E0f produces no characters. In // contrast %E*f always produces at least one digit, which may be '0'. // // Note that %Y produces as many characters as it takes to fully render the // year. A year outside of [-999:9999] when formatted with %E4Y will produce // more than four characters, just like %Y. // // We recommend that format strings include the UTC offset (%z, %Ez, or %E*z) // so that the result uniquely identifies a time instant. // // Example: // // absl::TimeZone lax; // if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { ... } // absl::Time t = absl::FromDateTime(2013, 1, 2, 3, 4, 5, lax); // // std::string f = absl::FormatTime("%H:%M:%S", t, lax); // "03:04:05" // f = absl::FormatTime("%H:%M:%E3S", t, lax); // "03:04:05.000" // // Note: If the given `absl::Time` is `absl::InfiniteFuture()`, the returned // std::string will be exactly "infinite-future". If the given `absl::Time` is // `absl::InfinitePast()`, the returned std::string will be exactly "infinite-past". // In both cases the given format std::string and `absl::TimeZone` are ignored. // std::string FormatTime(const std::string& format, Time t, TimeZone tz); // Convenience functions that format the given time using the RFC3339_full // format. The first overload uses the provided TimeZone, while the second // uses LocalTimeZone(). std::string FormatTime(Time t, TimeZone tz); std::string FormatTime(Time t); // Output stream operator. inline std::ostream& operator<<(std::ostream& os, Time t) { return os << FormatTime(t); } // ParseTime() // // Parses an input std::string according to the provided format std::string and // returns the corresponding `absl::Time`. Uses strftime()-like formatting // options, with the same extensions as FormatTime(), but with the // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f. %Ez // and %E*z also accept the same inputs. // // %Y consumes as many numeric characters as it can, so the matching data // should always be terminated with a non-numeric. %E4Y always consumes // exactly four characters, including any sign. // // Unspecified fields are taken from the default date and time of ... // // "1970-01-01 00:00:00.0 +0000" // // For example, parsing a std::string of "15:45" (%H:%M) will return an absl::Time // that represents "1970-01-01 15:45:00.0 +0000". // // Note that since ParseTime() returns time instants, it makes the most sense // to parse fully-specified date/time strings that include a UTC offset (%z, // %Ez, or %E*z). // // Note also that `absl::ParseTime()` only heeds the fields year, month, day, // hour, minute, (fractional) second, and UTC offset. Other fields, like // weekday (%a or %A), while parsed for syntactic validity, are ignored // in the conversion. // // Date and time fields that are out-of-range will be treated as errors // rather than normalizing them like `absl::FromDateTime()` does. For example, // it is an error to parse the date "Oct 32, 2013" because 32 is out of range. // // A leap second of ":60" is normalized to ":00" of the following minute // with fractional seconds discarded. The following table shows how the // given seconds and subseconds will be parsed: // // "59.x" -> 59.x // exact // "60.x" -> 00.0 // normalized // "00.x" -> 00.x // exact // // Errors are indicated by returning false and assigning an error message // to the "err" out param if it is non-null. // // Note: If the input std::string is exactly "infinite-future", the returned // `absl::Time` will be `absl::InfiniteFuture()` and `true` will be returned. // If the input std::string is "infinite-past", the returned `absl::Time` will be // `absl::InfinitePast()` and `true` will be returned. // bool ParseTime(const std::string& format, const std::string& input, Time* time, std::string* err); // Like ParseTime() above, but if the format std::string does not contain a UTC // offset specification (%z/%Ez/%E*z) then the input is interpreted in the // given TimeZone. This means that the input, by itself, does not identify a // unique instant. Being time-zone dependent, it also admits the possibility // of ambiguity or non-existence, in which case the "pre" time (as defined // for ConvertDateTime()) is returned. For these reasons we recommend that // all date/time strings include a UTC offset so they're context independent. bool ParseTime(const std::string& format, const std::string& input, TimeZone tz, Time* time, std::string* err); // TODO(absl-team): Remove once dependencies are removed. // ParseFlag() // UnparseFlag() // // Support for flag values of type Time. Time flags must be specified in a // format that matches absl::RFC3339_full. For example: // // --start_time=2016-01-02T03:04:05.678+08:00 // // Note: A UTC offset (or 'Z' indicating a zero-offset from UTC) is required. // // Additionally, if you'd like to specify a time as a count of // seconds/milliseconds/etc from the Unix epoch, use an absl::Duration flag // and add that duration to absl::UnixEpoch() to get an absl::Time. bool ParseFlag(const std::string& text, Time* t, std::string* error); std::string UnparseFlag(Time t); // TimeZone // // The `absl::TimeZone` is an opaque, small, value-type class representing a // geo-political region within which particular rules are used for converting // between absolute and civil times (see https://git.io/v59Ly). `absl::TimeZone` // values are named using the TZ identifiers from the IANA Time Zone Database, // such as "America/Los_Angeles" or "Australia/Sydney". `absl::TimeZone` values // are created from factory functions such as `absl::LoadTimeZone()`. Note: // strings like "PST" and "EDT" are not valid TZ identifiers. Prefer to pass by // value rather than const reference. // // For more on the fundamental concepts of time zones, absolute times, and civil // times, see https://github.com/google/cctz#fundamental-concepts // // Examples: // // absl::TimeZone utc = absl::UTCTimeZone(); // absl::TimeZone pst = absl::FixedTimeZone(-8 * 60 * 60); // absl::TimeZone loc = absl::LocalTimeZone(); // absl::TimeZone lax; // if (!absl::LoadTimeZone("America/Los_Angeles", &lax)) { ... } // // See also: // - https://github.com/google/cctz // - http://www.iana.org/time-zones // - http://en.wikipedia.org/wiki/Zoneinfo class TimeZone { public: explicit TimeZone(time_internal::cctz::time_zone tz) : cz_(tz) {} TimeZone() = default; // UTC, but prefer UTCTimeZone() to be explicit. TimeZone(const TimeZone&) = default; TimeZone& operator=(const TimeZone&) = default; explicit operator time_internal::cctz::time_zone() const { return cz_; } std::string name() const { return cz_.name(); } private: friend bool operator==(TimeZone a, TimeZone b) { return a.cz_ == b.cz_; } friend bool operator!=(TimeZone a, TimeZone b) { return a.cz_ != b.cz_; } friend std::ostream& operator<<(std::ostream& os, TimeZone tz) { return os << tz.name(); } time_internal::cctz::time_zone cz_; }; // LoadTimeZone() // // Loads the named zone. May perform I/O on the initial load of the named // zone. If the name is invalid, or some other kind of error occurs, returns // `false` and `*tz` is set to the UTC time zone. inline bool LoadTimeZone(const std::string& name, TimeZone* tz) { if (name == "localtime") { *tz = TimeZone(time_internal::cctz::local_time_zone()); return true; } time_internal::cctz::time_zone cz; const bool b = time_internal::cctz::load_time_zone(name, &cz); *tz = TimeZone(cz); return b; } // FixedTimeZone() // // Returns a TimeZone that is a fixed offset (seconds east) from UTC. // Note: If the absolute value of the offset is greater than 24 hours // you'll get UTC (i.e., no offset) instead. inline TimeZone FixedTimeZone(int seconds) { return TimeZone( time_internal::cctz::fixed_time_zone(std::chrono::seconds(seconds))); } // UTCTimeZone() // // Convenience method returning the UTC time zone. inline TimeZone UTCTimeZone() { return TimeZone(time_internal::cctz::utc_time_zone()); } // LocalTimeZone() // // Convenience method returning the local time zone, or UTC if there is // no configured local zone. Warning: Be wary of using LocalTimeZone(), // and particularly so in a server process, as the zone configured for the // local machine should be irrelevant. Prefer an explicit zone name. inline TimeZone LocalTimeZone() { return TimeZone(time_internal::cctz::local_time_zone()); } // ============================================================================ // Implementation Details Follow // ============================================================================ namespace time_internal { // Creates a Duration with a given representation. // REQUIRES: hi,lo is a valid representation of a Duration as specified // in time/duration.cc. constexpr Duration MakeDuration(int64_t hi, uint32_t lo = 0) { return Duration(hi, lo); } constexpr Duration MakeDuration(int64_t hi, int64_t lo) { return MakeDuration(hi, static_cast<uint32_t>(lo)); } // Creates a normalized Duration from an almost-normalized (sec,ticks) // pair. sec may be positive or negative. ticks must be in the range // -kTicksPerSecond < *ticks < kTicksPerSecond. If ticks is negative it // will be normalized to a positive value in the resulting Duration. constexpr Duration MakeNormalizedDuration(int64_t sec, int64_t ticks) { return (ticks < 0) ? MakeDuration(sec - 1, ticks + kTicksPerSecond) : MakeDuration(sec, ticks); } // Provide access to the Duration representation. constexpr int64_t GetRepHi(Duration d) { return d.rep_hi_; } constexpr uint32_t GetRepLo(Duration d) { return d.rep_lo_; } constexpr bool IsInfiniteDuration(Duration d) { return GetRepLo(d) == ~0U; } // Returns an infinite Duration with the opposite sign. // REQUIRES: IsInfiniteDuration(d) constexpr Duration OppositeInfinity(Duration d) { return GetRepHi(d) < 0 ? MakeDuration(std::numeric_limits<int64_t>::max(), ~0U) : MakeDuration(std::numeric_limits<int64_t>::min(), ~0U); } // Returns (-n)-1 (equivalently -(n+1)) without avoidable overflow. constexpr int64_t NegateAndSubtractOne(int64_t n) { // Note: Good compilers will optimize this expression to ~n when using // a two's-complement representation (which is required for int64_t). return (n < 0) ? -(n + 1) : (-n) - 1; } // Map between a Time and a Duration since the Unix epoch. Note that these // functions depend on the above mentioned choice of the Unix epoch for the // Time representation (and both need to be Time friends). Without this // knowledge, we would need to add-in/subtract-out UnixEpoch() respectively. constexpr Time FromUnixDuration(Duration d) { return Time(d); } constexpr Duration ToUnixDuration(Time t) { return t.rep_; } template <std::intmax_t N> constexpr Duration FromInt64(int64_t v, std::ratio<1, N>) { static_assert(0 < N && N <= 1000 * 1000 * 1000, "Unsupported ratio"); // Subsecond ratios cannot overflow. return MakeNormalizedDuration( v / N, v % N * kTicksPerNanosecond * 1000 * 1000 * 1000 / N); } constexpr Duration FromInt64(int64_t v, std::ratio<60>) { return Minutes(v); } constexpr Duration FromInt64(int64_t v, std::ratio<3600>) { return Hours(v); } // IsValidRep64<T>(0) is true if the expression `int64_t{std::declval<T>()}` is // valid. That is, if a T can be assigned to an int64_t without narrowing. template <typename T> constexpr auto IsValidRep64(int) -> decltype(int64_t{std::declval<T>()}, bool()) { return true; } template <typename T> constexpr auto IsValidRep64(char) -> bool { return false; } // Converts a std::chrono::duration to an absl::Duration. template <typename Rep, typename Period> constexpr Duration FromChrono(const std::chrono::duration<Rep, Period>& d) { static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); return FromInt64(int64_t{d.count()}, Period{}); } template <typename Ratio> int64_t ToInt64(Duration d, Ratio) { // Note: This may be used on MSVC, which may have a system_clock period of // std::ratio<1, 10 * 1000 * 1000> return ToInt64Seconds(d * Ratio::den / Ratio::num); } // Fastpath implementations for the 6 common duration units. inline int64_t ToInt64(Duration d, std::nano) { return ToInt64Nanoseconds(d); } inline int64_t ToInt64(Duration d, std::micro) { return ToInt64Microseconds(d); } inline int64_t ToInt64(Duration d, std::milli) { return ToInt64Milliseconds(d); } inline int64_t ToInt64(Duration d, std::ratio<1>) { return ToInt64Seconds(d); } inline int64_t ToInt64(Duration d, std::ratio<60>) { return ToInt64Minutes(d); } inline int64_t ToInt64(Duration d, std::ratio<3600>) { return ToInt64Hours(d); } // Converts an absl::Duration to a chrono duration of type T. template <typename T> T ToChronoDuration(Duration d) { using Rep = typename T::rep; using Period = typename T::period; static_assert(IsValidRep64<Rep>(0), "duration::rep is invalid"); if (time_internal::IsInfiniteDuration(d)) return d < ZeroDuration() ? T::min() : T::max(); const auto v = ToInt64(d, Period{}); if (v > std::numeric_limits<Rep>::max()) return T::max(); if (v < std::numeric_limits<Rep>::min()) return T::min(); return T{v}; } } // namespace time_internal constexpr bool operator<(Duration lhs, Duration rhs) { return time_internal::GetRepHi(lhs) != time_internal::GetRepHi(rhs) ? time_internal::GetRepHi(lhs) < time_internal::GetRepHi(rhs) : time_internal::GetRepHi(lhs) == std::numeric_limits<int64_t>::min() ? time_internal::GetRepLo(lhs) + 1 < time_internal::GetRepLo(rhs) + 1 : time_internal::GetRepLo(lhs) < time_internal::GetRepLo(rhs); } constexpr bool operator==(Duration lhs, Duration rhs) { return time_internal::GetRepHi(lhs) == time_internal::GetRepHi(rhs) && time_internal::GetRepLo(lhs) == time_internal::GetRepLo(rhs); } constexpr Duration operator-(Duration d) { // This is a little interesting because of the special cases. // // If rep_lo_ is zero, we have it easy; it's safe to negate rep_hi_, we're // dealing with an integral number of seconds, and the only special case is // the maximum negative finite duration, which can't be negated. // // Infinities stay infinite, and just change direction. // // Finally we're in the case where rep_lo_ is non-zero, and we can borrow // a second's worth of ticks and avoid overflow (as negating int64_t-min + 1 // is safe). return time_internal::GetRepLo(d) == 0 ? time_internal::GetRepHi(d) == std::numeric_limits<int64_t>::min() ? InfiniteDuration() : time_internal::MakeDuration(-time_internal::GetRepHi(d)) : time_internal::IsInfiniteDuration(d) ? time_internal::OppositeInfinity(d) : time_internal::MakeDuration( time_internal::NegateAndSubtractOne( time_internal::GetRepHi(d)), time_internal::kTicksPerSecond - time_internal::GetRepLo(d)); } constexpr Duration Nanoseconds(int64_t n) { return time_internal::MakeNormalizedDuration( n / (1000 * 1000 * 1000), n % (1000 * 1000 * 1000) * time_internal::kTicksPerNanosecond); } constexpr Duration Microseconds(int64_t n) { return time_internal::MakeNormalizedDuration( n / (1000 * 1000), n % (1000 * 1000) * (1000 * time_internal::kTicksPerNanosecond)); } constexpr Duration Milliseconds(int64_t n) { return time_internal::MakeNormalizedDuration( n / 1000, n % 1000 * (1000 * 1000 * time_internal::kTicksPerNanosecond)); } constexpr Duration Seconds(int64_t n) { return time_internal::MakeDuration(n); } constexpr Duration Minutes(int64_t n) { return (n <= std::numeric_limits<int64_t>::max() / 60 && n >= std::numeric_limits<int64_t>::min() / 60) ? time_internal::MakeDuration(n * 60) : n > 0 ? InfiniteDuration() : -InfiniteDuration(); } constexpr Duration Hours(int64_t n) { return (n <= std::numeric_limits<int64_t>::max() / 3600 && n >= std::numeric_limits<int64_t>::min() / 3600) ? time_internal::MakeDuration(n * 3600) : n > 0 ? InfiniteDuration() : -InfiniteDuration(); } constexpr Duration InfiniteDuration() { return time_internal::MakeDuration(std::numeric_limits<int64_t>::max(), ~0U); } constexpr Duration FromChrono(const std::chrono::nanoseconds& d) { return time_internal::FromChrono(d); } constexpr Duration FromChrono(const std::chrono::microseconds& d) { return time_internal::FromChrono(d); } constexpr Duration FromChrono(const std::chrono::milliseconds& d) { return time_internal::FromChrono(d); } constexpr Duration FromChrono(const std::chrono::seconds& d) { return time_internal::FromChrono(d); } constexpr Duration FromChrono(const std::chrono::minutes& d) { return time_internal::FromChrono(d); } constexpr Duration FromChrono(const std::chrono::hours& d) { return time_internal::FromChrono(d); } constexpr Time FromUnixNanos(int64_t ns) { return time_internal::FromUnixDuration(Nanoseconds(ns)); } constexpr Time FromUnixMicros(int64_t us) { return time_internal::FromUnixDuration(Microseconds(us)); } constexpr Time FromUnixMillis(int64_t ms) { return time_internal::FromUnixDuration(Milliseconds(ms)); } constexpr Time FromUnixSeconds(int64_t s) { return time_internal::FromUnixDuration(Seconds(s)); } constexpr Time FromTimeT(time_t t) { return time_internal::FromUnixDuration(Seconds(t)); } } // namespace absl #endif // ABSL_TIME_TIME_H_