// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The implementation of the absl::Time class, which is declared in // //absl/time.h. // // The representation for an absl::Time is an absl::Duration offset from the // epoch. We use the traditional Unix epoch (1970-01-01 00:00:00 +0000) // for convenience, but this is not exposed in the API and could be changed. // // NOTE: To keep type verbosity to a minimum, the following variable naming // conventions are used throughout this file. // // tz: An absl::TimeZone // ci: An absl::TimeZone::CivilInfo // ti: An absl::TimeZone::TimeInfo // cd: An absl::CivilDay or a cctz::civil_day // cs: An absl::CivilSecond or a cctz::civil_second // bd: An absl::Time::Breakdown // cl: A cctz::time_zone::civil_lookup // al: A cctz::time_zone::absolute_lookup #include "absl/time/time.h" #if defined(_MSC_VER) #include <winsock2.h> // for timeval #endif #include <cstring> #include <ctime> #include <limits> #include "absl/time/internal/cctz/include/cctz/civil_time.h" #include "absl/time/internal/cctz/include/cctz/time_zone.h" namespace cctz = absl::time_internal::cctz; namespace absl { namespace { inline cctz::time_point<cctz::seconds> unix_epoch() { return std::chrono::time_point_cast<cctz::seconds>( std::chrono::system_clock::from_time_t(0)); } // Floors d to the next unit boundary closer to negative infinity. inline int64_t FloorToUnit(absl::Duration d, absl::Duration unit) { absl::Duration rem; int64_t q = absl::IDivDuration(d, unit, &rem); return (q > 0 || rem >= ZeroDuration() || q == std::numeric_limits<int64_t>::min()) ? q : q - 1; } inline absl::Time::Breakdown InfiniteFutureBreakdown() { absl::Time::Breakdown bd; bd.year = std::numeric_limits<int64_t>::max(); bd.month = 12; bd.day = 31; bd.hour = 23; bd.minute = 59; bd.second = 59; bd.subsecond = absl::InfiniteDuration(); bd.weekday = 4; bd.yearday = 365; bd.offset = 0; bd.is_dst = false; bd.zone_abbr = "-00"; return bd; } inline absl::Time::Breakdown InfinitePastBreakdown() { Time::Breakdown bd; bd.year = std::numeric_limits<int64_t>::min(); bd.month = 1; bd.day = 1; bd.hour = 0; bd.minute = 0; bd.second = 0; bd.subsecond = -absl::InfiniteDuration(); bd.weekday = 7; bd.yearday = 1; bd.offset = 0; bd.is_dst = false; bd.zone_abbr = "-00"; return bd; } inline absl::TimeZone::CivilInfo InfiniteFutureCivilInfo() { TimeZone::CivilInfo ci; ci.cs = CivilSecond::max(); ci.subsecond = InfiniteDuration(); ci.offset = 0; ci.is_dst = false; ci.zone_abbr = "-00"; return ci; } inline absl::TimeZone::CivilInfo InfinitePastCivilInfo() { TimeZone::CivilInfo ci; ci.cs = CivilSecond::min(); ci.subsecond = -InfiniteDuration(); ci.offset = 0; ci.is_dst = false; ci.zone_abbr = "-00"; return ci; } inline absl::TimeConversion InfiniteFutureTimeConversion() { absl::TimeConversion tc; tc.pre = tc.trans = tc.post = absl::InfiniteFuture(); tc.kind = absl::TimeConversion::UNIQUE; tc.normalized = true; return tc; } inline TimeConversion InfinitePastTimeConversion() { absl::TimeConversion tc; tc.pre = tc.trans = tc.post = absl::InfinitePast(); tc.kind = absl::TimeConversion::UNIQUE; tc.normalized = true; return tc; } // Makes a Time from sec, overflowing to InfiniteFuture/InfinitePast as // necessary. If sec is min/max, then consult cs+tz to check for overlow. Time MakeTimeWithOverflow(const cctz::time_point<cctz::seconds>& sec, const cctz::civil_second& cs, const cctz::time_zone& tz, bool* normalized = nullptr) { const auto max = cctz::time_point<cctz::seconds>::max(); const auto min = cctz::time_point<cctz::seconds>::min(); if (sec == max) { const auto al = tz.lookup(max); if (cs > al.cs) { if (normalized) *normalized = true; return absl::InfiniteFuture(); } } if (sec == min) { const auto al = tz.lookup(min); if (cs < al.cs) { if (normalized) *normalized = true; return absl::InfinitePast(); } } const auto hi = (sec - unix_epoch()).count(); return time_internal::FromUnixDuration(time_internal::MakeDuration(hi)); } // Returns Mon=1..Sun=7. inline int MapWeekday(const cctz::weekday& wd) { switch (wd) { case cctz::weekday::monday: return 1; case cctz::weekday::tuesday: return 2; case cctz::weekday::wednesday: return 3; case cctz::weekday::thursday: return 4; case cctz::weekday::friday: return 5; case cctz::weekday::saturday: return 6; case cctz::weekday::sunday: return 7; } return 1; } bool FindTransition(const cctz::time_zone& tz, bool (cctz::time_zone::*find_transition)( const cctz::time_point<cctz::seconds>& tp, cctz::time_zone::civil_transition* trans) const, Time t, TimeZone::CivilTransition* trans) { // Transitions are second-aligned, so we can discard any fractional part. const auto tp = unix_epoch() + cctz::seconds(ToUnixSeconds(t)); cctz::time_zone::civil_transition tr; if (!(tz.*find_transition)(tp, &tr)) return false; trans->from = CivilSecond(tr.from); trans->to = CivilSecond(tr.to); return true; } } // namespace // // Time // absl::Time::Breakdown Time::In(absl::TimeZone tz) const { if (*this == absl::InfiniteFuture()) return InfiniteFutureBreakdown(); if (*this == absl::InfinitePast()) return InfinitePastBreakdown(); const auto tp = unix_epoch() + cctz::seconds(time_internal::GetRepHi(rep_)); const auto al = cctz::time_zone(tz).lookup(tp); const auto cs = al.cs; const auto cd = cctz::civil_day(cs); absl::Time::Breakdown bd; bd.year = cs.year(); bd.month = cs.month(); bd.day = cs.day(); bd.hour = cs.hour(); bd.minute = cs.minute(); bd.second = cs.second(); bd.subsecond = time_internal::MakeDuration(0, time_internal::GetRepLo(rep_)); bd.weekday = MapWeekday(cctz::get_weekday(cd)); bd.yearday = cctz::get_yearday(cd); bd.offset = al.offset; bd.is_dst = al.is_dst; bd.zone_abbr = al.abbr; return bd; } // // Conversions from/to other time types. // absl::Time FromUDate(double udate) { return time_internal::FromUnixDuration(absl::Milliseconds(udate)); } absl::Time FromUniversal(int64_t universal) { return absl::UniversalEpoch() + 100 * absl::Nanoseconds(universal); } int64_t ToUnixNanos(Time t) { if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 33 == 0) { return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000 * 1000 * 1000) + (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4); } return FloorToUnit(time_internal::ToUnixDuration(t), absl::Nanoseconds(1)); } int64_t ToUnixMicros(Time t) { if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 43 == 0) { return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000 * 1000) + (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / 4000); } return FloorToUnit(time_internal::ToUnixDuration(t), absl::Microseconds(1)); } int64_t ToUnixMillis(Time t) { if (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >= 0 && time_internal::GetRepHi(time_internal::ToUnixDuration(t)) >> 53 == 0) { return (time_internal::GetRepHi(time_internal::ToUnixDuration(t)) * 1000) + (time_internal::GetRepLo(time_internal::ToUnixDuration(t)) / (4000 * 1000)); } return FloorToUnit(time_internal::ToUnixDuration(t), absl::Milliseconds(1)); } int64_t ToUnixSeconds(Time t) { return time_internal::GetRepHi(time_internal::ToUnixDuration(t)); } time_t ToTimeT(Time t) { return absl::ToTimespec(t).tv_sec; } double ToUDate(Time t) { return absl::FDivDuration(time_internal::ToUnixDuration(t), absl::Milliseconds(1)); } int64_t ToUniversal(absl::Time t) { return absl::FloorToUnit(t - absl::UniversalEpoch(), absl::Nanoseconds(100)); } absl::Time TimeFromTimespec(timespec ts) { return time_internal::FromUnixDuration(absl::DurationFromTimespec(ts)); } absl::Time TimeFromTimeval(timeval tv) { return time_internal::FromUnixDuration(absl::DurationFromTimeval(tv)); } timespec ToTimespec(Time t) { timespec ts; absl::Duration d = time_internal::ToUnixDuration(t); if (!time_internal::IsInfiniteDuration(d)) { ts.tv_sec = time_internal::GetRepHi(d); if (ts.tv_sec == time_internal::GetRepHi(d)) { // no time_t narrowing ts.tv_nsec = time_internal::GetRepLo(d) / 4; // floor return ts; } } if (d >= absl::ZeroDuration()) { ts.tv_sec = std::numeric_limits<time_t>::max(); ts.tv_nsec = 1000 * 1000 * 1000 - 1; } else { ts.tv_sec = std::numeric_limits<time_t>::min(); ts.tv_nsec = 0; } return ts; } timeval ToTimeval(Time t) { timeval tv; timespec ts = absl::ToTimespec(t); tv.tv_sec = ts.tv_sec; if (tv.tv_sec != ts.tv_sec) { // narrowing if (ts.tv_sec < 0) { tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); tv.tv_usec = 0; } else { tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); tv.tv_usec = 1000 * 1000 - 1; } return tv; } tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t return tv; } Time FromChrono(const std::chrono::system_clock::time_point& tp) { return time_internal::FromUnixDuration(time_internal::FromChrono( tp - std::chrono::system_clock::from_time_t(0))); } std::chrono::system_clock::time_point ToChronoTime(absl::Time t) { using D = std::chrono::system_clock::duration; auto d = time_internal::ToUnixDuration(t); if (d < ZeroDuration()) d = Floor(d, FromChrono(D{1})); return std::chrono::system_clock::from_time_t(0) + time_internal::ToChronoDuration<D>(d); } // // TimeZone // absl::TimeZone::CivilInfo TimeZone::At(Time t) const { if (t == absl::InfiniteFuture()) return InfiniteFutureCivilInfo(); if (t == absl::InfinitePast()) return InfinitePastCivilInfo(); const auto ud = time_internal::ToUnixDuration(t); const auto tp = unix_epoch() + cctz::seconds(time_internal::GetRepHi(ud)); const auto al = cz_.lookup(tp); TimeZone::CivilInfo ci; ci.cs = CivilSecond(al.cs); ci.subsecond = time_internal::MakeDuration(0, time_internal::GetRepLo(ud)); ci.offset = al.offset; ci.is_dst = al.is_dst; ci.zone_abbr = al.abbr; return ci; } absl::TimeZone::TimeInfo TimeZone::At(CivilSecond ct) const { const cctz::civil_second cs(ct); const auto cl = cz_.lookup(cs); TimeZone::TimeInfo ti; switch (cl.kind) { case cctz::time_zone::civil_lookup::UNIQUE: ti.kind = TimeZone::TimeInfo::UNIQUE; break; case cctz::time_zone::civil_lookup::SKIPPED: ti.kind = TimeZone::TimeInfo::SKIPPED; break; case cctz::time_zone::civil_lookup::REPEATED: ti.kind = TimeZone::TimeInfo::REPEATED; break; } ti.pre = MakeTimeWithOverflow(cl.pre, cs, cz_); ti.trans = MakeTimeWithOverflow(cl.trans, cs, cz_); ti.post = MakeTimeWithOverflow(cl.post, cs, cz_); return ti; } bool TimeZone::NextTransition(Time t, CivilTransition* trans) const { return FindTransition(cz_, &cctz::time_zone::next_transition, t, trans); } bool TimeZone::PrevTransition(Time t, CivilTransition* trans) const { return FindTransition(cz_, &cctz::time_zone::prev_transition, t, trans); } // // Conversions involving time zones. // absl::TimeConversion ConvertDateTime(int64_t year, int mon, int day, int hour, int min, int sec, TimeZone tz) { // Avoids years that are too extreme for CivilSecond to normalize. if (year > 300000000000) return InfiniteFutureTimeConversion(); if (year < -300000000000) return InfinitePastTimeConversion(); const CivilSecond cs(year, mon, day, hour, min, sec); const auto ti = tz.At(cs); TimeConversion tc; tc.pre = ti.pre; tc.trans = ti.trans; tc.post = ti.post; switch (ti.kind) { case TimeZone::TimeInfo::UNIQUE: tc.kind = TimeConversion::UNIQUE; break; case TimeZone::TimeInfo::SKIPPED: tc.kind = TimeConversion::SKIPPED; break; case TimeZone::TimeInfo::REPEATED: tc.kind = TimeConversion::REPEATED; break; } tc.normalized = false; if (year != cs.year() || mon != cs.month() || day != cs.day() || hour != cs.hour() || min != cs.minute() || sec != cs.second()) { tc.normalized = true; } return tc; } absl::Time FromTM(const struct tm& tm, absl::TimeZone tz) { const CivilSecond cs(tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, tm.tm_hour, tm.tm_min, tm.tm_sec); const auto ti = tz.At(cs); return tm.tm_isdst == 0 ? ti.post : ti.pre; } struct tm ToTM(absl::Time t, absl::TimeZone tz) { struct tm tm = {}; const auto ci = tz.At(t); const auto& cs = ci.cs; tm.tm_sec = cs.second(); tm.tm_min = cs.minute(); tm.tm_hour = cs.hour(); tm.tm_mday = cs.day(); tm.tm_mon = cs.month() - 1; // Saturates tm.tm_year in cases of over/underflow, accounting for the fact // that tm.tm_year is years since 1900. if (cs.year() < std::numeric_limits<int>::min() + 1900) { tm.tm_year = std::numeric_limits<int>::min(); } else if (cs.year() > std::numeric_limits<int>::max()) { tm.tm_year = std::numeric_limits<int>::max() - 1900; } else { tm.tm_year = static_cast<int>(cs.year() - 1900); } switch (GetWeekday(cs)) { case Weekday::sunday: tm.tm_wday = 0; break; case Weekday::monday: tm.tm_wday = 1; break; case Weekday::tuesday: tm.tm_wday = 2; break; case Weekday::wednesday: tm.tm_wday = 3; break; case Weekday::thursday: tm.tm_wday = 4; break; case Weekday::friday: tm.tm_wday = 5; break; case Weekday::saturday: tm.tm_wday = 6; break; } tm.tm_yday = GetYearDay(cs) - 1; tm.tm_isdst = ci.is_dst ? 1 : 0; return tm; } } // namespace absl