// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // The implementation of the absl::Duration class, which is declared in // //absl/time.h. This class behaves like a numeric type; it has no public // methods and is used only through the operators defined here. // // Implementation notes: // // An absl::Duration is represented as // // rep_hi_ : (int64_t) Whole seconds // rep_lo_ : (uint32_t) Fractions of a second // // The seconds value (rep_hi_) may be positive or negative as appropriate. // The fractional seconds (rep_lo_) is always a positive offset from rep_hi_. // The API for Duration guarantees at least nanosecond resolution, which // means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds. // However, to utilize more of the available 32 bits of space in rep_lo_, // we instead store quarters of a nanosecond in rep_lo_ resulting in a max // value of 4B - 1. This allows us to correctly handle calculations like // 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual // Duration rep using quarters of a nanosecond. // // 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000 // -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000} // // Infinite durations are represented as Durations with the rep_lo_ field set // to all 1s. // // +InfiniteDuration: // rep_hi_ : kint64max // rep_lo_ : ~0U // // -InfiniteDuration: // rep_hi_ : kint64min // rep_lo_ : ~0U // // Arithmetic overflows/underflows to +/- infinity and saturates. #if defined(_MSC_VER) #include <winsock2.h> // for timeval #endif #include <algorithm> #include <cassert> #include <cctype> #include <cerrno> #include <cmath> #include <cstdint> #include <cstdlib> #include <cstring> #include <ctime> #include <functional> #include <limits> #include <string> #include "absl/base/casts.h" #include "absl/numeric/int128.h" #include "absl/time/time.h" namespace absl { namespace { using time_internal::kTicksPerNanosecond; using time_internal::kTicksPerSecond; constexpr int64_t kint64max = std::numeric_limits<int64_t>::max(); constexpr int64_t kint64min = std::numeric_limits<int64_t>::min(); // Can't use std::isinfinite() because it doesn't exist on windows. inline bool IsFinite(double d) { if (std::isnan(d)) return false; return d != std::numeric_limits<double>::infinity() && d != -std::numeric_limits<double>::infinity(); } inline bool IsValidDivisor(double d) { if (std::isnan(d)) return false; return d != 0.0; } // Can't use std::round() because it is only available in C++11. // Note that we ignore the possibility of floating-point over/underflow. template <typename Double> inline double Round(Double d) { return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5); } // *sec may be positive or negative. *ticks must be in the range // -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it // will be normalized to a positive value by adjusting *sec accordingly. inline void NormalizeTicks(int64_t* sec, int64_t* ticks) { if (*ticks < 0) { --*sec; *ticks += kTicksPerSecond; } } // Makes a uint128 from the absolute value of the given scalar. inline uint128 MakeU128(int64_t a) { uint128 u128 = 0; if (a < 0) { ++u128; ++a; // Makes it safe to negate 'a' a = -a; } u128 += static_cast<uint64_t>(a); return u128; } // Makes a uint128 count of ticks out of the absolute value of the Duration. inline uint128 MakeU128Ticks(Duration d) { int64_t rep_hi = time_internal::GetRepHi(d); uint32_t rep_lo = time_internal::GetRepLo(d); if (rep_hi < 0) { ++rep_hi; rep_hi = -rep_hi; rep_lo = kTicksPerSecond - rep_lo; } uint128 u128 = static_cast<uint64_t>(rep_hi); u128 *= static_cast<uint64_t>(kTicksPerSecond); u128 += rep_lo; return u128; } // Breaks a uint128 of ticks into a Duration. inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) { int64_t rep_hi; uint32_t rep_lo; const uint64_t h64 = Uint128High64(u128); const uint64_t l64 = Uint128Low64(u128); if (h64 == 0) { // fastpath const uint64_t hi = l64 / kTicksPerSecond; rep_hi = static_cast<int64_t>(hi); rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond); } else { // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond). // Any positive tick count whose high 64 bits are >= kMaxRepHi64 // is not representable as a Duration. A negative tick count can // have its high 64 bits == kMaxRepHi64 but only when the low 64 // bits are all zero, otherwise it is not representable either. const uint64_t kMaxRepHi64 = 0x77359400UL; if (h64 >= kMaxRepHi64) { if (is_neg && h64 == kMaxRepHi64 && l64 == 0) { // Avoid trying to represent -kint64min below. return time_internal::MakeDuration(kint64min); } return is_neg ? -InfiniteDuration() : InfiniteDuration(); } const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond); const uint128 hi = u128 / kTicksPerSecond128; rep_hi = static_cast<int64_t>(Uint128Low64(hi)); rep_lo = static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128)); } if (is_neg) { rep_hi = -rep_hi; if (rep_lo != 0) { --rep_hi; rep_lo = kTicksPerSecond - rep_lo; } } return time_internal::MakeDuration(rep_hi, rep_lo); } // Convert between int64_t and uint64_t, preserving representation. This // allows us to do arithmetic in the unsigned domain, where overflow has // well-defined behavior. See operator+=() and operator-=(). // // C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef // name intN_t designates a signed integer type with width N, no padding // bits, and a two's complement representation." So, we can convert to // and from the corresponding uint64_t value using a bit cast. inline uint64_t EncodeTwosComp(int64_t v) { return absl::bit_cast<uint64_t>(v); } inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); } // Note: The overflow detection in this function is done using greater/less *or // equal* because kint64max/min is too large to be represented exactly in a // double (which only has 53 bits of precision). In order to avoid assigning to // rep->hi a double value that is too large for an int64_t (and therefore is // undefined), we must consider computations that equal kint64max/min as a // double as overflow cases. inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) { double c = a_hi + b_hi; if (c >= kint64max) { *d = InfiniteDuration(); return false; } if (c <= kint64min) { *d = -InfiniteDuration(); return false; } *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d)); return true; } // A functor that's similar to std::multiplies<T>, except this returns the max // T value instead of overflowing. This is only defined for uint128. template <typename Ignored> struct SafeMultiply { uint128 operator()(uint128 a, uint128 b) const { // b hi is always zero because it originated as an int64_t. assert(Uint128High64(b) == 0); // Fastpath to avoid the expensive overflow check with division. if (Uint128High64(a) == 0) { return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0) ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b)) : a * b; } return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b; } }; // Scales (i.e., multiplies or divides, depending on the Operation template) // the Duration d by the int64_t r. template <template <typename> class Operation> inline Duration ScaleFixed(Duration d, int64_t r) { const uint128 a = MakeU128Ticks(d); const uint128 b = MakeU128(r); const uint128 q = Operation<uint128>()(a, b); const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0); return MakeDurationFromU128(q, is_neg); } // Scales (i.e., multiplies or divides, depending on the Operation template) // the Duration d by the double r. template <template <typename> class Operation> inline Duration ScaleDouble(Duration d, double r) { Operation<double> op; double hi_doub = op(time_internal::GetRepHi(d), r); double lo_doub = op(time_internal::GetRepLo(d), r); double hi_int = 0; double hi_frac = std::modf(hi_doub, &hi_int); // Moves hi's fractional bits to lo. lo_doub /= kTicksPerSecond; lo_doub += hi_frac; double lo_int = 0; double lo_frac = std::modf(lo_doub, &lo_int); // Rolls lo into hi if necessary. int64_t lo64 = Round(lo_frac * kTicksPerSecond); Duration ans; if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans; int64_t hi64 = time_internal::GetRepHi(ans); if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans; hi64 = time_internal::GetRepHi(ans); lo64 %= kTicksPerSecond; NormalizeTicks(&hi64, &lo64); return time_internal::MakeDuration(hi64, lo64); } // Tries to divide num by den as fast as possible by looking for common, easy // cases. If the division was done, the quotient is in *q and the remainder is // in *rem and true will be returned. inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q, Duration* rem) { // Bail if num or den is an infinity. if (time_internal::IsInfiniteDuration(num) || time_internal::IsInfiniteDuration(den)) return false; int64_t num_hi = time_internal::GetRepHi(num); uint32_t num_lo = time_internal::GetRepLo(num); int64_t den_hi = time_internal::GetRepHi(den); uint32_t den_lo = time_internal::GetRepLo(den); if (den_hi == 0 && den_lo == kTicksPerNanosecond) { // Dividing by 1ns if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) { *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond; *rem = time_internal::MakeDuration(0, num_lo % den_lo); return true; } } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) { // Dividing by 100ns (common when converting to Universal time) if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) { *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond); *rem = time_internal::MakeDuration(0, num_lo % den_lo); return true; } } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) { // Dividing by 1us if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) { *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond); *rem = time_internal::MakeDuration(0, num_lo % den_lo); return true; } } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) { // Dividing by 1ms if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) { *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond); *rem = time_internal::MakeDuration(0, num_lo % den_lo); return true; } } else if (den_hi > 0 && den_lo == 0) { // Dividing by positive multiple of 1s if (num_hi >= 0) { if (den_hi == 1) { *q = num_hi; *rem = time_internal::MakeDuration(0, num_lo); return true; } *q = num_hi / den_hi; *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo); return true; } if (num_lo != 0) { num_hi += 1; } int64_t quotient = num_hi / den_hi; int64_t rem_sec = num_hi % den_hi; if (rem_sec > 0) { rem_sec -= den_hi; quotient += 1; } if (num_lo != 0) { rem_sec -= 1; } *q = quotient; *rem = time_internal::MakeDuration(rem_sec, num_lo); return true; } return false; } } // namespace namespace time_internal { // The 'satq' argument indicates whether the quotient should saturate at the // bounds of int64_t. If it does saturate, the difference will spill over to // the remainder. If it does not saturate, the remainder remain accurate, // but the returned quotient will over/underflow int64_t and should not be used. int64_t IDivDuration(bool satq, const Duration num, const Duration den, Duration* rem) { int64_t q = 0; if (IDivFastPath(num, den, &q, rem)) { return q; } const bool num_neg = num < ZeroDuration(); const bool den_neg = den < ZeroDuration(); const bool quotient_neg = num_neg != den_neg; if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { *rem = num_neg ? -InfiniteDuration() : InfiniteDuration(); return quotient_neg ? kint64min : kint64max; } if (time_internal::IsInfiniteDuration(den)) { *rem = num; return 0; } const uint128 a = MakeU128Ticks(num); const uint128 b = MakeU128Ticks(den); uint128 quotient128 = a / b; if (satq) { // Limits the quotient to the range of int64_t. if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) { quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min)) : uint128(static_cast<uint64_t>(kint64max)); } } const uint128 remainder128 = a - quotient128 * b; *rem = MakeDurationFromU128(remainder128, num_neg); if (!quotient_neg || quotient128 == 0) { return Uint128Low64(quotient128) & kint64max; } // The quotient needs to be negated, but we need to carefully handle // quotient128s with the top bit on. return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1; } } // namespace time_internal // // Additive operators. // Duration& Duration::operator+=(Duration rhs) { if (time_internal::IsInfiniteDuration(*this)) return *this; if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs; const int64_t orig_rep_hi = rep_hi_; rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_)); if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) { rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1); rep_lo_ -= kTicksPerSecond; } rep_lo_ += rhs.rep_lo_; if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) { return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration(); } return *this; } Duration& Duration::operator-=(Duration rhs) { if (time_internal::IsInfiniteDuration(*this)) return *this; if (time_internal::IsInfiniteDuration(rhs)) { return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); } const int64_t orig_rep_hi = rep_hi_; rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_)); if (rep_lo_ < rhs.rep_lo_) { rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1); rep_lo_ += kTicksPerSecond; } rep_lo_ -= rhs.rep_lo_; if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) { return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); } return *this; } // // Multiplicative operators. // Duration& Duration::operator*=(int64_t r) { if (time_internal::IsInfiniteDuration(*this)) { const bool is_neg = (r < 0) != (rep_hi_ < 0); return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); } return *this = ScaleFixed<SafeMultiply>(*this, r); } Duration& Duration::operator*=(double r) { if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) { const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); } return *this = ScaleDouble<std::multiplies>(*this, r); } Duration& Duration::operator/=(int64_t r) { if (time_internal::IsInfiniteDuration(*this) || r == 0) { const bool is_neg = (r < 0) != (rep_hi_ < 0); return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); } return *this = ScaleFixed<std::divides>(*this, r); } Duration& Duration::operator/=(double r) { if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) { const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); } return *this = ScaleDouble<std::divides>(*this, r); } Duration& Duration::operator%=(Duration rhs) { time_internal::IDivDuration(false, *this, rhs, this); return *this; } double FDivDuration(Duration num, Duration den) { // Arithmetic with infinity is sticky. if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { return (num < ZeroDuration()) == (den < ZeroDuration()) ? std::numeric_limits<double>::infinity() : -std::numeric_limits<double>::infinity(); } if (time_internal::IsInfiniteDuration(den)) return 0.0; double a = static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond + time_internal::GetRepLo(num); double b = static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond + time_internal::GetRepLo(den); return a / b; } // // Trunc/Floor/Ceil. // Duration Trunc(Duration d, Duration unit) { return d - (d % unit); } Duration Floor(const Duration d, const Duration unit) { const absl::Duration td = Trunc(d, unit); return td <= d ? td : td - AbsDuration(unit); } Duration Ceil(const Duration d, const Duration unit) { const absl::Duration td = Trunc(d, unit); return td >= d ? td : td + AbsDuration(unit); } // // Factory functions. // Duration DurationFromTimespec(timespec ts) { if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) { int64_t ticks = ts.tv_nsec * kTicksPerNanosecond; return time_internal::MakeDuration(ts.tv_sec, ticks); } return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec); } Duration DurationFromTimeval(timeval tv) { if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) { int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond; return time_internal::MakeDuration(tv.tv_sec, ticks); } return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec); } // // Conversion to other duration types. // int64_t ToInt64Nanoseconds(Duration d) { if (time_internal::GetRepHi(d) >= 0 && time_internal::GetRepHi(d) >> 33 == 0) { return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) + (time_internal::GetRepLo(d) / kTicksPerNanosecond); } return d / Nanoseconds(1); } int64_t ToInt64Microseconds(Duration d) { if (time_internal::GetRepHi(d) >= 0 && time_internal::GetRepHi(d) >> 43 == 0) { return (time_internal::GetRepHi(d) * 1000 * 1000) + (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000)); } return d / Microseconds(1); } int64_t ToInt64Milliseconds(Duration d) { if (time_internal::GetRepHi(d) >= 0 && time_internal::GetRepHi(d) >> 53 == 0) { return (time_internal::GetRepHi(d) * 1000) + (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000)); } return d / Milliseconds(1); } int64_t ToInt64Seconds(Duration d) { int64_t hi = time_internal::GetRepHi(d); if (time_internal::IsInfiniteDuration(d)) return hi; if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; return hi; } int64_t ToInt64Minutes(Duration d) { int64_t hi = time_internal::GetRepHi(d); if (time_internal::IsInfiniteDuration(d)) return hi; if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; return hi / 60; } int64_t ToInt64Hours(Duration d) { int64_t hi = time_internal::GetRepHi(d); if (time_internal::IsInfiniteDuration(d)) return hi; if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; return hi / (60 * 60); } double ToDoubleNanoseconds(Duration d) { return FDivDuration(d, Nanoseconds(1)); } double ToDoubleMicroseconds(Duration d) { return FDivDuration(d, Microseconds(1)); } double ToDoubleMilliseconds(Duration d) { return FDivDuration(d, Milliseconds(1)); } double ToDoubleSeconds(Duration d) { return FDivDuration(d, Seconds(1)); } double ToDoubleMinutes(Duration d) { return FDivDuration(d, Minutes(1)); } double ToDoubleHours(Duration d) { return FDivDuration(d, Hours(1)); } timespec ToTimespec(Duration d) { timespec ts; if (!time_internal::IsInfiniteDuration(d)) { int64_t rep_hi = time_internal::GetRepHi(d); uint32_t rep_lo = time_internal::GetRepLo(d); if (rep_hi < 0) { // Tweak the fields so that unsigned division of rep_lo // maps to truncation (towards zero) for the timespec. rep_lo += kTicksPerNanosecond - 1; if (rep_lo >= kTicksPerSecond) { rep_hi += 1; rep_lo -= kTicksPerSecond; } } ts.tv_sec = rep_hi; if (ts.tv_sec == rep_hi) { // no time_t narrowing ts.tv_nsec = rep_lo / kTicksPerNanosecond; return ts; } } if (d >= ZeroDuration()) { ts.tv_sec = std::numeric_limits<time_t>::max(); ts.tv_nsec = 1000 * 1000 * 1000 - 1; } else { ts.tv_sec = std::numeric_limits<time_t>::min(); ts.tv_nsec = 0; } return ts; } timeval ToTimeval(Duration d) { timeval tv; timespec ts = ToTimespec(d); if (ts.tv_sec < 0) { // Tweak the fields so that positive division of tv_nsec // maps to truncation (towards zero) for the timeval. ts.tv_nsec += 1000 - 1; if (ts.tv_nsec >= 1000 * 1000 * 1000) { ts.tv_sec += 1; ts.tv_nsec -= 1000 * 1000 * 1000; } } tv.tv_sec = ts.tv_sec; if (tv.tv_sec != ts.tv_sec) { // narrowing if (ts.tv_sec < 0) { tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); tv.tv_usec = 0; } else { tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); tv.tv_usec = 1000 * 1000 - 1; } return tv; } tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t return tv; } std::chrono::nanoseconds ToChronoNanoseconds(Duration d) { return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d); } std::chrono::microseconds ToChronoMicroseconds(Duration d) { return time_internal::ToChronoDuration<std::chrono::microseconds>(d); } std::chrono::milliseconds ToChronoMilliseconds(Duration d) { return time_internal::ToChronoDuration<std::chrono::milliseconds>(d); } std::chrono::seconds ToChronoSeconds(Duration d) { return time_internal::ToChronoDuration<std::chrono::seconds>(d); } std::chrono::minutes ToChronoMinutes(Duration d) { return time_internal::ToChronoDuration<std::chrono::minutes>(d); } std::chrono::hours ToChronoHours(Duration d) { return time_internal::ToChronoDuration<std::chrono::hours>(d); } // // To/From string formatting. // namespace { // Formats a positive 64-bit integer in the given field width. Note that // it is up to the caller of Format64() to ensure that there is sufficient // space before ep to hold the conversion. char* Format64(char* ep, int width, int64_t v) { do { --width; *--ep = '0' + (v % 10); // contiguous digits } while (v /= 10); while (--width >= 0) *--ep = '0'; // zero pad return ep; } // Helpers for FormatDuration() that format 'n' and append it to 'out' // followed by the given 'unit'. If 'n' formats to "0", nothing is // appended (not even the unit). // A type that encapsulates how to display a value of a particular unit. For // values that are displayed with fractional parts, the precision indicates // where to round the value. The precision varies with the display unit because // a Duration can hold only quarters of a nanosecond, so displaying information // beyond that is just noise. // // For example, a microsecond value of 42.00025xxxxx should not display beyond 5 // fractional digits, because it is in the noise of what a Duration can // represent. struct DisplayUnit { const char* abbr; int prec; double pow10; }; const DisplayUnit kDisplayNano = {"ns", 2, 1e2}; const DisplayUnit kDisplayMicro = {"us", 5, 1e5}; const DisplayUnit kDisplayMilli = {"ms", 8, 1e8}; const DisplayUnit kDisplaySec = {"s", 11, 1e11}; const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored const DisplayUnit kDisplayHour = {"h", -1, 0.0}; // prec ignored void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) { char buf[sizeof("2562047788015216")]; // hours in max duration char* const ep = buf + sizeof(buf); char* bp = Format64(ep, 0, n); if (*bp != '0' || bp + 1 != ep) { out->append(bp, ep - bp); out->append(unit.abbr); } } // Note: unit.prec is limited to double's digits10 value (typically 15) so it // always fits in buf[]. void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) { const int buf_size = std::numeric_limits<double>::digits10; const int prec = std::min(buf_size, unit.prec); char buf[buf_size]; // also large enough to hold integer part char* ep = buf + sizeof(buf); double d = 0; int64_t frac_part = Round(std::modf(n, &d) * unit.pow10); int64_t int_part = d; if (int_part != 0 || frac_part != 0) { char* bp = Format64(ep, 0, int_part); // always < 1000 out->append(bp, ep - bp); if (frac_part != 0) { out->push_back('.'); bp = Format64(ep, prec, frac_part); while (ep[-1] == '0') --ep; out->append(bp, ep - bp); } out->append(unit.abbr); } } } // namespace // From Go's doc at https://golang.org/pkg/time/#Duration.String // [FormatDuration] returns a string representing the duration in the // form "72h3m0.5s". Leading zero units are omitted. As a special // case, durations less than one second format use a smaller unit // (milli-, micro-, or nanoseconds) to ensure that the leading digit // is non-zero. The zero duration formats as 0, with no unit. std::string FormatDuration(Duration d) { const Duration min_duration = Seconds(kint64min); if (d == min_duration) { // Avoid needing to negate kint64min by directly returning what the // following code should produce in that case. return "-2562047788015215h30m8s"; } std::string s; if (d < ZeroDuration()) { s.append("-"); d = -d; } if (d == InfiniteDuration()) { s.append("inf"); } else if (d < Seconds(1)) { // Special case for durations with a magnitude < 1 second. The duration // is printed as a fraction of a single unit, e.g., "1.2ms". if (d < Microseconds(1)) { AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano); } else if (d < Milliseconds(1)) { AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro); } else { AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli); } } else { AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour); AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin); AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec); } if (s.empty() || s == "-") { s = "0"; } return s; } namespace { // A helper for ParseDuration() that parses a leading number from the given // string and stores the result in *int_part/*frac_part/*frac_scale. The // given string pointer is modified to point to the first unconsumed char. bool ConsumeDurationNumber(const char** dpp, int64_t* int_part, int64_t* frac_part, int64_t* frac_scale) { *int_part = 0; *frac_part = 0; *frac_scale = 1; // invariant: *frac_part < *frac_scale const char* start = *dpp; for (; std::isdigit(**dpp); *dpp += 1) { const int d = **dpp - '0'; // contiguous digits if (*int_part > kint64max / 10) return false; *int_part *= 10; if (*int_part > kint64max - d) return false; *int_part += d; } const bool int_part_empty = (*dpp == start); if (**dpp != '.') return !int_part_empty; for (*dpp += 1; std::isdigit(**dpp); *dpp += 1) { const int d = **dpp - '0'; // contiguous digits if (*frac_scale <= kint64max / 10) { *frac_part *= 10; *frac_part += d; *frac_scale *= 10; } } return !int_part_empty || *frac_scale != 1; } // A helper for ParseDuration() that parses a leading unit designator (e.g., // ns, us, ms, s, m, h) from the given string and stores the resulting unit // in "*unit". The given string pointer is modified to point to the first // unconsumed char. bool ConsumeDurationUnit(const char** start, Duration* unit) { const char *s = *start; bool ok = true; if (strncmp(s, "ns", 2) == 0) { s += 2; *unit = Nanoseconds(1); } else if (strncmp(s, "us", 2) == 0) { s += 2; *unit = Microseconds(1); } else if (strncmp(s, "ms", 2) == 0) { s += 2; *unit = Milliseconds(1); } else if (strncmp(s, "s", 1) == 0) { s += 1; *unit = Seconds(1); } else if (strncmp(s, "m", 1) == 0) { s += 1; *unit = Minutes(1); } else if (strncmp(s, "h", 1) == 0) { s += 1; *unit = Hours(1); } else { ok = false; } *start = s; return ok; } } // namespace // From Go's doc at https://golang.org/pkg/time/#ParseDuration // [ParseDuration] parses a duration string. A duration string is // a possibly signed sequence of decimal numbers, each with optional // fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". // Valid time units are "ns", "us" "ms", "s", "m", "h". bool ParseDuration(const std::string& dur_string, Duration* d) { const char* start = dur_string.c_str(); int sign = 1; if (*start == '-' || *start == '+') { sign = *start == '-' ? -1 : 1; ++start; } // Can't parse a duration from an empty std::string. if (*start == '\0') { return false; } // Special case for a std::string of "0". if (*start == '0' && *(start + 1) == '\0') { *d = ZeroDuration(); return true; } if (strcmp(start, "inf") == 0) { *d = sign * InfiniteDuration(); return true; } Duration dur; while (*start != '\0') { int64_t int_part; int64_t frac_part; int64_t frac_scale; Duration unit; if (!ConsumeDurationNumber(&start, &int_part, &frac_part, &frac_scale) || !ConsumeDurationUnit(&start, &unit)) { return false; } if (int_part != 0) dur += sign * int_part * unit; if (frac_part != 0) dur += sign * frac_part * unit / frac_scale; } *d = dur; return true; } bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) { return ParseDuration(std::string(text), dst); } std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); } bool ParseFlag(const std::string& text, Duration* dst, std::string* ) { return ParseDuration(text, dst); } std::string UnparseFlag(Duration d) { return FormatDuration(d); } } // namespace absl