// // POSIX spec: // http://pubs.opengroup.org/onlinepubs/009695399/functions/fprintf.html // #include "absl/strings/internal/str_format/arg.h" #include #include #include #include #include #include "absl/base/port.h" #include "absl/strings/internal/str_format/float_conversion.h" #include "absl/strings/numbers.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace str_format_internal { namespace { // Reduce *capacity by s.size(), clipped to a 0 minimum. void ReducePadding(string_view s, size_t *capacity) { *capacity = Excess(s.size(), *capacity); } // Reduce *capacity by n, clipped to a 0 minimum. void ReducePadding(size_t n, size_t *capacity) { *capacity = Excess(n, *capacity); } template struct MakeUnsigned : std::make_unsigned {}; template <> struct MakeUnsigned { using type = absl::uint128; }; template <> struct MakeUnsigned { using type = absl::uint128; }; template struct IsSigned : std::is_signed {}; template <> struct IsSigned : std::true_type {}; template <> struct IsSigned : std::false_type {}; // Integral digit printer. // Call one of the PrintAs* routines after construction once. // Use with_neg_and_zero/without_neg_or_zero/is_negative to access the results. class IntDigits { public: // Print the unsigned integer as octal. // Supports unsigned integral types and uint128. template void PrintAsOct(T v) { static_assert(!IsSigned::value, ""); char *p = storage_ + sizeof(storage_); do { *--p = static_cast('0' + (static_cast(v) & 7)); v >>= 3; } while (v); start_ = p; size_ = storage_ + sizeof(storage_) - p; } // Print the signed or unsigned integer as decimal. // Supports all integral types. template void PrintAsDec(T v) { static_assert(std::is_integral::value, ""); start_ = storage_; size_ = numbers_internal::FastIntToBuffer(v, storage_) - storage_; } void PrintAsDec(int128 v) { auto u = static_cast(v); bool add_neg = false; if (v < 0) { add_neg = true; u = uint128{} - u; } PrintAsDec(u, add_neg); } void PrintAsDec(uint128 v, bool add_neg = false) { // This function can be sped up if needed. We can call FastIntToBuffer // twice, or fix FastIntToBuffer to support uint128. char *p = storage_ + sizeof(storage_); do { p -= 2; numbers_internal::PutTwoDigits(static_cast(v % 100), p); v /= 100; } while (v); if (p[0] == '0') { // We printed one too many hexits. ++p; } if (add_neg) { *--p = '-'; } size_ = storage_ + sizeof(storage_) - p; start_ = p; } // Print the unsigned integer as hex using lowercase. // Supports unsigned integral types and uint128. template void PrintAsHexLower(T v) { static_assert(!IsSigned::value, ""); char *p = storage_ + sizeof(storage_); do { p -= 2; constexpr const char* table = numbers_internal::kHexTable; std::memcpy(p, table + 2 * (static_cast(v) & 0xFF), 2); if (sizeof(T) == 1) break; v >>= 8; } while (v); if (p[0] == '0') { // We printed one too many digits. ++p; } start_ = p; size_ = storage_ + sizeof(storage_) - p; } // Print the unsigned integer as hex using uppercase. // Supports unsigned integral types and uint128. template void PrintAsHexUpper(T v) { static_assert(!IsSigned::value, ""); char *p = storage_ + sizeof(storage_); // kHexTable is only lowercase, so do it manually for uppercase. do { *--p = "0123456789ABCDEF"[static_cast(v) & 15]; v >>= 4; } while (v); start_ = p; size_ = storage_ + sizeof(storage_) - p; } // The printed value including the '-' sign if available. // For inputs of value `0`, this will return "0" string_view with_neg_and_zero() const { return {start_, size_}; } // The printed value not including the '-' sign. // For inputs of value `0`, this will return "". string_view without_neg_or_zero() const { static_assert('-' < '0', "The check below verifies both."); size_t advance = start_[0] <= '0' ? 1 : 0; return {start_ + advance, size_ - advance}; } bool is_negative() const { return start_[0] == '-'; } private: const char *start_; size_t size_; // Max size: 128 bit value as octal -> 43 digits, plus sign char char storage_[128 / 3 + 1 + 1]; }; // Note: 'o' conversions do not have a base indicator, it's just that // the '#' flag is specified to modify the precision for 'o' conversions. string_view BaseIndicator(const IntDigits &as_digits, const ConversionSpec conv) { // always show 0x for %p. bool alt = conv.has_alt_flag() || conv.conversion_char() == ConversionChar::p; bool hex = (conv.conversion_char() == FormatConversionChar::x || conv.conversion_char() == FormatConversionChar::X || conv.conversion_char() == FormatConversionChar::p); // From the POSIX description of '#' flag: // "For x or X conversion specifiers, a non-zero result shall have // 0x (or 0X) prefixed to it." if (alt && hex && !as_digits.without_neg_or_zero().empty()) { return conv.conversion_char() == FormatConversionChar::X ? "0X" : "0x"; } return {}; } string_view SignColumn(bool neg, const ConversionSpec conv) { if (conv.conversion_char() == FormatConversionChar::d || conv.conversion_char() == FormatConversionChar::i) { if (neg) return "-"; if (conv.has_show_pos_flag()) return "+"; if (conv.has_sign_col_flag()) return " "; } return {}; } bool ConvertCharImpl(unsigned char v, const ConversionSpec conv, FormatSinkImpl *sink) { size_t fill = 0; if (conv.width() >= 0) fill = conv.width(); ReducePadding(1, &fill); if (!conv.has_left_flag()) sink->Append(fill, ' '); sink->Append(1, v); if (conv.has_left_flag()) sink->Append(fill, ' '); return true; } bool ConvertIntImplInnerSlow(const IntDigits &as_digits, const ConversionSpec conv, FormatSinkImpl *sink) { // Print as a sequence of Substrings: // [left_spaces][sign][base_indicator][zeroes][formatted][right_spaces] size_t fill = 0; if (conv.width() >= 0) fill = conv.width(); string_view formatted = as_digits.without_neg_or_zero(); ReducePadding(formatted, &fill); string_view sign = SignColumn(as_digits.is_negative(), conv); ReducePadding(sign, &fill); string_view base_indicator = BaseIndicator(as_digits, conv); ReducePadding(base_indicator, &fill); int precision = conv.precision(); bool precision_specified = precision >= 0; if (!precision_specified) precision = 1; if (conv.has_alt_flag() && conv.conversion_char() == ConversionChar::o) { // From POSIX description of the '#' (alt) flag: // "For o conversion, it increases the precision (if necessary) to // force the first digit of the result to be zero." if (formatted.empty() || *formatted.begin() != '0') { int needed = static_cast(formatted.size()) + 1; precision = std::max(precision, needed); } } size_t num_zeroes = Excess(formatted.size(), precision); ReducePadding(num_zeroes, &fill); size_t num_left_spaces = !conv.has_left_flag() ? fill : 0; size_t num_right_spaces = conv.has_left_flag() ? fill : 0; // From POSIX description of the '0' (zero) flag: // "For d, i, o, u, x, and X conversion specifiers, if a precision // is specified, the '0' flag is ignored." if (!precision_specified && conv.has_zero_flag()) { num_zeroes += num_left_spaces; num_left_spaces = 0; } sink->Append(num_left_spaces, ' '); sink->Append(sign); sink->Append(base_indicator); sink->Append(num_zeroes, '0'); sink->Append(formatted); sink->Append(num_right_spaces, ' '); return true; } template bool ConvertIntArg(T v, const ConversionSpec conv, FormatSinkImpl *sink) { using U = typename MakeUnsigned::type; IntDigits as_digits; switch (conv.conversion_char()) { case FormatConversionChar::c: return ConvertCharImpl(static_cast(v), conv, sink); case FormatConversionChar::o: as_digits.PrintAsOct(static_cast(v)); break; case FormatConversionChar::x: as_digits.PrintAsHexLower(static_cast(v)); break; case FormatConversionChar::X: as_digits.PrintAsHexUpper(static_cast(v)); break; case FormatConversionChar::u: as_digits.PrintAsDec(static_cast(v)); break; case FormatConversionChar::d: case FormatConversionChar::i: as_digits.PrintAsDec(v); break; case FormatConversionChar::a: case FormatConversionChar::e: case FormatConversionChar::f: case FormatConversionChar::g: case FormatConversionChar::A: case FormatConversionChar::E: case FormatConversionChar::F: case FormatConversionChar::G: return ConvertFloatImpl(static_cast(v), conv, sink); default: return false; } if (conv.is_basic()) { sink->Append(as_digits.with_neg_and_zero()); return true; } return ConvertIntImplInnerSlow(as_digits, conv, sink); } template bool ConvertFloatArg(T v, const ConversionSpec conv, FormatSinkImpl *sink) { return FormatConversionCharIsFloat(conv.conversion_char()) && ConvertFloatImpl(v, conv, sink); } inline bool ConvertStringArg(string_view v, const ConversionSpec conv, FormatSinkImpl *sink) { if (conv.conversion_char() != FormatConversionCharInternal::s) return false; if (conv.is_basic()) { sink->Append(v); return true; } return sink->PutPaddedString(v, conv.width(), conv.precision(), conv.has_left_flag()); } } // namespace // ==================== Strings ==================== StringConvertResult FormatConvertImpl(const std::string &v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertStringArg(v, conv, sink)}; } StringConvertResult FormatConvertImpl(string_view v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertStringArg(v, conv, sink)}; } ArgConvertResult FormatConvertImpl(const char *v, const ConversionSpec conv, FormatSinkImpl *sink) { if (conv.conversion_char() == FormatConversionCharInternal::p) return {FormatConvertImpl(VoidPtr(v), conv, sink).value}; size_t len; if (v == nullptr) { len = 0; } else if (conv.precision() < 0) { len = std::strlen(v); } else { // If precision is set, we look for the NUL-terminator on the valid range. len = std::find(v, v + conv.precision(), '\0') - v; } return {ConvertStringArg(string_view(v, len), conv, sink)}; } // ==================== Raw pointers ==================== ArgConvertResult FormatConvertImpl( VoidPtr v, const ConversionSpec conv, FormatSinkImpl *sink) { if (conv.conversion_char() != FormatConversionCharInternal::p) return {false}; if (!v.value) { sink->Append("(nil)"); return {true}; } IntDigits as_digits; as_digits.PrintAsHexLower(v.value); return {ConvertIntImplInnerSlow(as_digits, conv, sink)}; } // ==================== Floats ==================== FloatingConvertResult FormatConvertImpl(float v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertFloatArg(v, conv, sink)}; } FloatingConvertResult FormatConvertImpl(double v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertFloatArg(v, conv, sink)}; } FloatingConvertResult FormatConvertImpl(long double v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertFloatArg(v, conv, sink)}; } // ==================== Chars ==================== IntegralConvertResult FormatConvertImpl(char v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(signed char v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(unsigned char v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } // ==================== Ints ==================== IntegralConvertResult FormatConvertImpl(short v, // NOLINT const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(unsigned short v, // NOLINT const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(int v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(unsigned v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(long v, // NOLINT const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(unsigned long v, // NOLINT const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(long long v, // NOLINT const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(unsigned long long v, // NOLINT const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(absl::int128 v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } IntegralConvertResult FormatConvertImpl(absl::uint128 v, const ConversionSpec conv, FormatSinkImpl *sink) { return {ConvertIntArg(v, conv, sink)}; } ABSL_INTERNAL_FORMAT_DISPATCH_OVERLOADS_EXPAND_(); } // namespace str_format_internal ABSL_NAMESPACE_END } // namespace absl