// Copyright 2020 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: cord.h // ----------------------------------------------------------------------------- // // This file defines the `absl::Cord` data structure and operations on that data // structure. A Cord is a string-like sequence of characters optimized for // specific use cases. Unlike a `std::string`, which stores an array of // contiguous characters, Cord data is stored in a structure consisting of // separate, reference-counted "chunks." (Currently, this implementation is a // tree structure, though that implementation may change.) // // Because a Cord consists of these chunks, data can be added to or removed from // a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a // `std::string`, a Cord can therefore accomodate data that changes over its // lifetime, though it's not quite "mutable"; it can change only in the // attachment, detachment, or rearrangement of chunks of its constituent data. // // A Cord provides some benefit over `std::string` under the following (albeit // narrow) circumstances: // // * Cord data is designed to grow and shrink over a Cord's lifetime. Cord // provides efficient insertions and deletions at the start and end of the // character sequences, avoiding copies in those cases. Static data should // generally be stored as strings. // * External memory consisting of string-like data can be directly added to // a Cord without requiring copies or allocations. // * Cord data may be shared and copied cheaply. Cord provides a copy-on-write // implementation and cheap sub-Cord operations. Copying a Cord is an O(1) // operation. // // As a consequence to the above, Cord data is generally large. Small data // should generally use strings, as construction of a Cord requires some // overhead. Small Cords (<= 15 bytes) are represented inline, but most small // Cords are expected to grow over their lifetimes. // // Note that because a Cord is made up of separate chunked data, random access // to character data within a Cord is slower than within a `std::string`. // // Thread Safety // // Cord has the same thread-safety properties as many other types like // std::string, std::vector<>, int, etc -- it is thread-compatible. In // particular, if threads do not call non-const methods, then it is safe to call // const methods without synchronization. Copying a Cord produces a new instance // that can be used concurrently with the original in arbitrary ways. #ifndef ABSL_STRINGS_CORD_H_ #define ABSL_STRINGS_CORD_H_ #include <algorithm> #include <cstddef> #include <cstdint> #include <cstring> #include <iostream> #include <iterator> #include <string> #include <type_traits> #include "absl/base/internal/endian.h" #include "absl/base/internal/invoke.h" #include "absl/base/internal/per_thread_tls.h" #include "absl/base/macros.h" #include "absl/base/port.h" #include "absl/container/inlined_vector.h" #include "absl/functional/function_ref.h" #include "absl/meta/type_traits.h" #include "absl/strings/internal/cord_internal.h" #include "absl/strings/internal/resize_uninitialized.h" #include "absl/strings/string_view.h" #include "absl/types/optional.h" namespace absl { ABSL_NAMESPACE_BEGIN class Cord; class CordTestPeer; template <typename Releaser> Cord MakeCordFromExternal(absl::string_view, Releaser&&); void CopyCordToString(const Cord& src, std::string* dst); // Cord // // A Cord is a sequence of characters, designed to be more efficient than a // `std::string` in certain circumstances: namely, large string data that needs // to change over its lifetime or shared, especially when such data is shared // across API boundaries. // // A Cord stores its character data in a structure that allows efficient prepend // and append operations. This makes a Cord useful for large string data sent // over in a wire format that may need to be prepended or appended at some point // during the data exchange (e.g. HTTP, protocol buffers). For example, a // Cord is useful for storing an HTTP request, and prepending an HTTP header to // such a request. // // Cords should not be used for storing general string data, however. They // require overhead to construct and are slower than strings for random access. // // The Cord API provides the following common API operations: // // * Create or assign Cords out of existing string data, memory, or other Cords // * Append and prepend data to an existing Cord // * Create new Sub-Cords from existing Cord data // * Swap Cord data and compare Cord equality // * Write out Cord data by constructing a `std::string` // // Additionally, the API provides iterator utilities to iterate through Cord // data via chunks or character bytes. // class Cord { private: template <typename T> using EnableIfString = absl::enable_if_t<std::is_same<T, std::string>::value, int>; public: // Cord::Cord() Constructors // Creates an empty Cord constexpr Cord() noexcept; // Creates a Cord from an existing Cord. Cord is copyable and efficiently // movable. The moved-from state is valid but unspecified. Cord(const Cord& src); Cord(Cord&& src) noexcept; Cord& operator=(const Cord& x); Cord& operator=(Cord&& x) noexcept; // Creates a Cord from a `src` string. This constructor is marked explicit to // prevent implicit Cord constructions from arguments convertible to an // `absl::string_view`. explicit Cord(absl::string_view src); Cord& operator=(absl::string_view src); // Creates a Cord from a `std::string&&` rvalue. These constructors are // templated to avoid ambiguities for types that are convertible to both // `absl::string_view` and `std::string`, such as `const char*`. // // Note that these functions reserve the right to use the `string&&`'s // memory and that they will do so in the future. template <typename T, EnableIfString<T> = 0> explicit Cord(T&& src) : Cord(absl::string_view(src)) {} template <typename T, EnableIfString<T> = 0> Cord& operator=(T&& src); // Cord::~Cord() // // Destructs the Cord ~Cord() { if (contents_.is_tree()) DestroyCordSlow(); } // Cord::MakeCordFromExternal(data, callable) // // Creates a Cord that takes ownership of external string memory. The // contents of `data` are not copied to the Cord; instead, the external // memory is added to the Cord and reference-counted. This data may not be // changed for the life of the Cord, though it may be prepended or appended // to. // // `MakeCordFromExternal()` takes a callable "releaser" that is invoked when // the reference count for `data` reaches zero. As noted above, this data must // remain live until the releaser is invoked. The callable releaser also must: // // * be move constructible // * support `void operator()(absl::string_view) const` or `void operator()` // * not have alignment requirement greater than what is guaranteed by // `::operator new`. This alignment is dictated by // `alignof(std::max_align_t)` (pre-C++17 code) or // `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code). // // Example: // // Cord MakeCord(BlockPool* pool) { // Block* block = pool->NewBlock(); // FillBlock(block); // return absl::MakeCordFromExternal( // block->ToStringView(), // [pool, block](absl::string_view v) { // pool->FreeBlock(block, v); // }); // } // // WARNING: Because a Cord can be reference-counted, it's likely a bug if your // releaser doesn't do anything. For example, consider the following: // // void Foo(const char* buffer, int len) { // auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len), // [](absl::string_view) {}); // // // BUG: If Bar() copies its cord for any reason, including keeping a // // substring of it, the lifetime of buffer might be extended beyond // // when Foo() returns. // Bar(c); // } template <typename Releaser> friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser); // Cord::Clear() // // Releases the Cord data. Any nodes that share data with other Cords, if // applicable, will have their reference counts reduced by 1. void Clear(); // Cord::Append() // // Appends data to the Cord, which may come from another Cord or other string // data. void Append(const Cord& src); void Append(Cord&& src); void Append(absl::string_view src); template <typename T, EnableIfString<T> = 0> void Append(T&& src); // Cord::Prepend() // // Prepends data to the Cord, which may come from another Cord or other string // data. void Prepend(const Cord& src); void Prepend(absl::string_view src); template <typename T, EnableIfString<T> = 0> void Prepend(T&& src); // Cord::RemovePrefix() // // Removes the first `n` bytes of a Cord. void RemovePrefix(size_t n); void RemoveSuffix(size_t n); // Cord::Subcord() // // Returns a new Cord representing the subrange [pos, pos + new_size) of // *this. If pos >= size(), the result is empty(). If // (pos + new_size) >= size(), the result is the subrange [pos, size()). Cord Subcord(size_t pos, size_t new_size) const; // swap() // // Swaps the data of Cord `x` with Cord `y`. friend void swap(Cord& x, Cord& y) noexcept; // Cord::size() // // Returns the size of the Cord. size_t size() const; // Cord::empty() // // Determines whether the given Cord is empty, returning `true` is so. bool empty() const; // Cord::EstimatedMemoryUsage() // // Returns the *approximate* number of bytes held in full or in part by this // Cord (which may not remain the same between invocations). Note that Cords // that share memory could each be "charged" independently for the same shared // memory. size_t EstimatedMemoryUsage() const; // Cord::Compare() // // Compares 'this' Cord with rhs. This function and its relatives treat Cords // as sequences of unsigned bytes. The comparison is a straightforward // lexicographic comparison. `Cord::Compare()` returns values as follows: // // -1 'this' Cord is smaller // 0 two Cords are equal // 1 'this' Cord is larger int Compare(absl::string_view rhs) const; int Compare(const Cord& rhs) const; // Cord::StartsWith() // // Determines whether the Cord starts with the passed string data `rhs`. bool StartsWith(const Cord& rhs) const; bool StartsWith(absl::string_view rhs) const; // Cord::EndsWidth() // // Determines whether the Cord ends with the passed string data `rhs`. bool EndsWith(absl::string_view rhs) const; bool EndsWith(const Cord& rhs) const; // Cord::operator std::string() // // Converts a Cord into a `std::string()`. This operator is marked explicit to // prevent unintended Cord usage in functions that take a string. explicit operator std::string() const; // CopyCordToString() // // Copies the contents of a `src` Cord into a `*dst` string. // // This function optimizes the case of reusing the destination string since it // can reuse previously allocated capacity. However, this function does not // guarantee that pointers previously returned by `dst->data()` remain valid // even if `*dst` had enough capacity to hold `src`. If `*dst` is a new // object, prefer to simply use the conversion operator to `std::string`. friend void CopyCordToString(const Cord& src, std::string* dst); class CharIterator; //---------------------------------------------------------------------------- // Cord::ChunkIterator //---------------------------------------------------------------------------- // // A `Cord::ChunkIterator` allows iteration over the constituent chunks of its // Cord. Such iteration allows you to perform non-const operatons on the data // of a Cord without modifying it. // // Generally, you do not instantiate a `Cord::ChunkIterator` directly; // instead, you create one implicitly through use of the `Cord::Chunks()` // member function. // // The `Cord::ChunkIterator` has the following properties: // // * The iterator is invalidated after any non-const operation on the // Cord object over which it iterates. // * The `string_view` returned by dereferencing a valid, non-`end()` // iterator is guaranteed to be non-empty. // * Two `ChunkIterator` objects can be compared equal if and only if they // remain valid and iterate over the same Cord. // * The iterator in this case is a proxy iterator; the `string_view` // returned by the iterator does not live inside the Cord, and its // lifetime is limited to the lifetime of the iterator itself. To help // prevent lifetime issues, `ChunkIterator::reference` is not a true // reference type and is equivalent to `value_type`. // * The iterator keeps state that can grow for Cords that contain many // nodes and are imbalanced due to sharing. Prefer to pass this type by // const reference instead of by value. class ChunkIterator { public: using iterator_category = std::input_iterator_tag; using value_type = absl::string_view; using difference_type = ptrdiff_t; using pointer = const value_type*; using reference = value_type; ChunkIterator() = default; ChunkIterator& operator++(); ChunkIterator operator++(int); bool operator==(const ChunkIterator& other) const; bool operator!=(const ChunkIterator& other) const; reference operator*() const; pointer operator->() const; friend class Cord; friend class CharIterator; private: // Constructs a `begin()` iterator from `cord`. explicit ChunkIterator(const Cord* cord); // Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than // `current_chunk_.size()`. void RemoveChunkPrefix(size_t n); Cord AdvanceAndReadBytes(size_t n); void AdvanceBytes(size_t n); // Iterates `n` bytes, where `n` is expected to be greater than or equal to // `current_chunk_.size()`. void AdvanceBytesSlowPath(size_t n); // A view into bytes of the current `CordRep`. It may only be a view to a // suffix of bytes if this is being used by `CharIterator`. absl::string_view current_chunk_; // The current leaf, or `nullptr` if the iterator points to short data. // If the current chunk is a substring node, current_leaf_ points to the // underlying flat or external node. absl::cord_internal::CordRep* current_leaf_ = nullptr; // The number of bytes left in the `Cord` over which we are iterating. size_t bytes_remaining_ = 0; absl::InlinedVector<absl::cord_internal::CordRep*, 4> stack_of_right_children_; }; // Cord::ChunkIterator::chunk_begin() // // Returns an iterator to the first chunk of the `Cord`. // // Generally, prefer using `Cord::Chunks()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `ChunkIterator` where range-based for-loops are not useful. // // Example: // // absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c, // absl::string_view s) { // return std::find(c.chunk_begin(), c.chunk_end(), s); // } ChunkIterator chunk_begin() const; // Cord::ChunkItertator::chunk_end() // // Returns an iterator one increment past the last chunk of the `Cord`. // // Generally, prefer using `Cord::Chunks()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `ChunkIterator` where range-based for-loops may not be available. ChunkIterator chunk_end() const; //---------------------------------------------------------------------------- // Cord::ChunkIterator::ChunkRange //---------------------------------------------------------------------------- // // `ChunkRange` is a helper class for iterating over the chunks of the `Cord`, // producing an iterator which can be used within a range-based for loop. // Construction of a `ChunkRange` will return an iterator pointing to the // first chunk of the Cord. Generally, do not construct a `ChunkRange` // directly; instead, prefer to use the `Cord::Chunks()` method. // // Implementation note: `ChunkRange` is simply a convenience wrapper over // `Cord::chunk_begin()` and `Cord::chunk_end()`. class ChunkRange { public: explicit ChunkRange(const Cord* cord) : cord_(cord) {} ChunkIterator begin() const; ChunkIterator end() const; private: const Cord* cord_; }; // Cord::Chunks() // // Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks // of a `Cord` with a range-based for-loop. For most iteration tasks on a // Cord, use `Cord::Chunks()` to retrieve this iterator. // // Example: // // void ProcessChunks(const Cord& cord) { // for (absl::string_view chunk : cord.Chunks()) { ... } // } // // Note that the ordinary caveats of temporary lifetime extension apply: // // void Process() { // for (absl::string_view chunk : CordFactory().Chunks()) { // // The temporary Cord returned by CordFactory has been destroyed! // } // } ChunkRange Chunks() const; //---------------------------------------------------------------------------- // Cord::CharIterator //---------------------------------------------------------------------------- // // A `Cord::CharIterator` allows iteration over the constituent characters of // a `Cord`. // // Generally, you do not instantiate a `Cord::CharIterator` directly; instead, // you create one implicitly through use of the `Cord::Chars()` member // function. // // A `Cord::CharIterator` has the following properties: // // * The iterator is invalidated after any non-const operation on the // Cord object over which it iterates. // * Two `CharIterator` objects can be compared equal if and only if they // remain valid and iterate over the same Cord. // * The iterator keeps state that can grow for Cords that contain many // nodes and are imbalanced due to sharing. Prefer to pass this type by // const reference instead of by value. // * This type cannot act as a forward iterator because a `Cord` can reuse // sections of memory. This fact violates the requirement for forward // iterators to compare equal if dereferencing them returns the same // object. class CharIterator { public: using iterator_category = std::input_iterator_tag; using value_type = char; using difference_type = ptrdiff_t; using pointer = const char*; using reference = const char&; CharIterator() = default; CharIterator& operator++(); CharIterator operator++(int); bool operator==(const CharIterator& other) const; bool operator!=(const CharIterator& other) const; reference operator*() const; pointer operator->() const; friend Cord; private: explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {} ChunkIterator chunk_iterator_; }; // Cord::CharIterator::AdvanceAndRead() // // Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes // advanced as a separate `Cord`. `n_bytes` must be less than or equal to the // number of bytes within the Cord; otherwise, behavior is undefined. It is // valid to pass `char_end()` and `0`. static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes); // Cord::CharIterator::Advance() // // Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than // or equal to the number of bytes remaining within the Cord; otherwise, // behavior is undefined. It is valid to pass `char_end()` and `0`. static void Advance(CharIterator* it, size_t n_bytes); // Cord::CharIterator::ChunkRemaining() // // Returns the longest contiguous view starting at the iterator's position. // // `it` must be dereferenceable. static absl::string_view ChunkRemaining(const CharIterator& it); // Cord::CharIterator::char_begin() // // Returns an iterator to the first character of the `Cord`. // // Generally, prefer using `Cord::Chars()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `CharIterator` where range-based for-loops may not be available. CharIterator char_begin() const; // Cord::CharIterator::char_end() // // Returns an iterator to one past the last character of the `Cord`. // // Generally, prefer using `Cord::Chars()` within a range-based for loop for // iterating over the chunks of a Cord. This method may be useful for getting // a `CharIterator` where range-based for-loops are not useful. CharIterator char_end() const; // Cord::CharIterator::CharRange // // `CharRange` is a helper class for iterating over the characters of a // producing an iterator which can be used within a range-based for loop. // Construction of a `CharRange` will return an iterator pointing to the first // character of the Cord. Generally, do not construct a `CharRange` directly; // instead, prefer to use the `Cord::Chars()` method show below. // // Implementation note: `CharRange` is simply a convenience wrapper over // `Cord::char_begin()` and `Cord::char_end()`. class CharRange { public: explicit CharRange(const Cord* cord) : cord_(cord) {} CharIterator begin() const; CharIterator end() const; private: const Cord* cord_; }; // Cord::CharIterator::Chars() // // Returns a `Cord::CharIterator` for iterating over the characters of a // `Cord` with a range-based for-loop. For most character-based iteration // tasks on a Cord, use `Cord::Chars()` to retrieve this iterator. // // Example: // // void ProcessCord(const Cord& cord) { // for (char c : cord.Chars()) { ... } // } // // Note that the ordinary caveats of temporary lifetime extension apply: // // void Process() { // for (char c : CordFactory().Chars()) { // // The temporary Cord returned by CordFactory has been destroyed! // } // } CharRange Chars() const; // Cord::operator[] // // Get the "i"th character of the Cord and returns it, provided that // 0 <= i < Cord.size(). // // NOTE: This routine is reasonably efficient. It is roughly // logarithmic based on the number of chunks that make up the cord. Still, // if you need to iterate over the contents of a cord, you should // use a CharIterator/ChunkIterator rather than call operator[] or Get() // repeatedly in a loop. char operator[](size_t i) const; // Cord::TryFlat() // // If this cord's representation is a single flat array, return a // string_view referencing that array. Otherwise return nullopt. absl::optional<absl::string_view> TryFlat() const; // Cord::Flatten() // // Flattens the cord into a single array and returns a view of the data. // // If the cord was already flat, the contents are not modified. absl::string_view Flatten(); // Support absl::Cord as a sink object for absl::Format(). friend void AbslFormatFlush(absl::Cord* cord, absl::string_view part) { cord->Append(part); } template <typename H> friend H AbslHashValue(H hash_state, const absl::Cord& c) { absl::optional<absl::string_view> maybe_flat = c.TryFlat(); if (maybe_flat.has_value()) { return H::combine(std::move(hash_state), *maybe_flat); } return c.HashFragmented(std::move(hash_state)); } private: friend class CordTestPeer; friend bool operator==(const Cord& lhs, const Cord& rhs); friend bool operator==(const Cord& lhs, absl::string_view rhs); // Call the provided function once for each cord chunk, in order. Unlike // Chunks(), this API will not allocate memory. void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const; // Allocates new contiguous storage for the contents of the cord. This is // called by Flatten() when the cord was not already flat. absl::string_view FlattenSlowPath(); // Actual cord contents are hidden inside the following simple // class so that we can isolate the bulk of cord.cc from changes // to the representation. // // InlineRep holds either a tree pointer, or an array of kMaxInline bytes. class InlineRep { public: static constexpr unsigned char kMaxInline = 15; static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), ""); // Tag byte & kMaxInline means we are storing a pointer. static constexpr unsigned char kTreeFlag = 1 << 4; // Tag byte & kProfiledFlag means we are profiling the Cord. static constexpr unsigned char kProfiledFlag = 1 << 5; constexpr InlineRep() : data_{} {} InlineRep(const InlineRep& src); InlineRep(InlineRep&& src); InlineRep& operator=(const InlineRep& src); InlineRep& operator=(InlineRep&& src) noexcept; void Swap(InlineRep* rhs); bool empty() const; size_t size() const; const char* data() const; // Returns nullptr if holding pointer void set_data(const char* data, size_t n, bool nullify_tail); // Discards pointer, if any char* set_data(size_t n); // Write data to the result // Returns nullptr if holding bytes absl::cord_internal::CordRep* tree() const; // Discards old pointer, if any void set_tree(absl::cord_internal::CordRep* rep); // Replaces a tree with a new root. This is faster than set_tree, but it // should only be used when it's clear that the old rep was a tree. void replace_tree(absl::cord_internal::CordRep* rep); // Returns non-null iff was holding a pointer absl::cord_internal::CordRep* clear(); // Convert to pointer if necessary absl::cord_internal::CordRep* force_tree(size_t extra_hint); void reduce_size(size_t n); // REQUIRES: holding data void remove_prefix(size_t n); // REQUIRES: holding data void AppendArray(const char* src_data, size_t src_size); absl::string_view FindFlatStartPiece() const; void AppendTree(absl::cord_internal::CordRep* tree); void PrependTree(absl::cord_internal::CordRep* tree); void GetAppendRegion(char** region, size_t* size, size_t max_length); void GetAppendRegion(char** region, size_t* size); bool IsSame(const InlineRep& other) const { return memcmp(data_, other.data_, sizeof(data_)) == 0; } int BitwiseCompare(const InlineRep& other) const { uint64_t x, y; // Use memcpy to avoid anti-aliasing issues. memcpy(&x, data_, sizeof(x)); memcpy(&y, other.data_, sizeof(y)); if (x == y) { memcpy(&x, data_ + 8, sizeof(x)); memcpy(&y, other.data_ + 8, sizeof(y)); if (x == y) return 0; } return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y) ? -1 : 1; } void CopyTo(std::string* dst) const { // memcpy is much faster when operating on a known size. On most supported // platforms, the small string optimization is large enough that resizing // to 15 bytes does not cause a memory allocation. absl::strings_internal::STLStringResizeUninitialized(dst, sizeof(data_) - 1); memcpy(&(*dst)[0], data_, sizeof(data_) - 1); // erase is faster than resize because the logic for memory allocation is // not needed. dst->erase(data_[kMaxInline]); } // Copies the inline contents into `dst`. Assumes the cord is not empty. void CopyToArray(char* dst) const; bool is_tree() const { return data_[kMaxInline] > kMaxInline; } private: friend class Cord; void AssignSlow(const InlineRep& src); // Unrefs the tree, stops profiling, and zeroes the contents void ClearSlow(); // If the data has length <= kMaxInline, we store it in data_[0..len-1], // and store the length in data_[kMaxInline]. Else we store it in a tree // and store a pointer to that tree in data_[0..sizeof(CordRep*)-1]. alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1]; }; InlineRep contents_; // Helper for MemoryUsage() static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep); // Helper for GetFlat() and TryFlat() static bool GetFlatAux(absl::cord_internal::CordRep* rep, absl::string_view* fragment); // Helper for ForEachChunk() static void ForEachChunkAux( absl::cord_internal::CordRep* rep, absl::FunctionRef<void(absl::string_view)> callback); // The destructor for non-empty Cords. void DestroyCordSlow(); // Out-of-line implementation of slower parts of logic. void CopyToArraySlowPath(char* dst) const; int CompareSlowPath(absl::string_view rhs, size_t compared_size, size_t size_to_compare) const; int CompareSlowPath(const Cord& rhs, size_t compared_size, size_t size_to_compare) const; bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const; bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const; int CompareImpl(const Cord& rhs) const; template <typename ResultType, typename RHS> friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs, size_t size_to_compare); static absl::string_view GetFirstChunk(const Cord& c); static absl::string_view GetFirstChunk(absl::string_view sv); // Returns a new reference to contents_.tree(), or steals an existing // reference if called on an rvalue. absl::cord_internal::CordRep* TakeRep() const&; absl::cord_internal::CordRep* TakeRep() &&; // Helper for Append() template <typename C> void AppendImpl(C&& src); // Helper for AbslHashValue() template <typename H> H HashFragmented(H hash_state) const { typename H::AbslInternalPiecewiseCombiner combiner; ForEachChunk([&combiner, &hash_state](absl::string_view chunk) { hash_state = combiner.add_buffer(std::move(hash_state), chunk.data(), chunk.size()); }); return H::combine(combiner.finalize(std::move(hash_state)), size()); } }; ABSL_NAMESPACE_END } // namespace absl namespace absl { ABSL_NAMESPACE_BEGIN // allow a Cord to be logged extern std::ostream& operator<<(std::ostream& out, const Cord& cord); // ------------------------------------------------------------------ // Internal details follow. Clients should ignore. namespace cord_internal { // Fast implementation of memmove for up to 15 bytes. This implementation is // safe for overlapping regions. If nullify_tail is true, the destination is // padded with '\0' up to 16 bytes. inline void SmallMemmove(char* dst, const char* src, size_t n, bool nullify_tail = false) { if (n >= 8) { assert(n <= 16); uint64_t buf1; uint64_t buf2; memcpy(&buf1, src, 8); memcpy(&buf2, src + n - 8, 8); if (nullify_tail) { memset(dst + 8, 0, 8); } memcpy(dst, &buf1, 8); memcpy(dst + n - 8, &buf2, 8); } else if (n >= 4) { uint32_t buf1; uint32_t buf2; memcpy(&buf1, src, 4); memcpy(&buf2, src + n - 4, 4); if (nullify_tail) { memset(dst + 4, 0, 4); memset(dst + 8, 0, 8); } memcpy(dst, &buf1, 4); memcpy(dst + n - 4, &buf2, 4); } else { if (n != 0) { dst[0] = src[0]; dst[n / 2] = src[n / 2]; dst[n - 1] = src[n - 1]; } if (nullify_tail) { memset(dst + 8, 0, 8); memset(dst + n, 0, 8); } } } struct ExternalRepReleaserPair { CordRep* rep; void* releaser_address; }; // Allocates a new external `CordRep` and returns a pointer to it and a pointer // to `releaser_size` bytes where the desired releaser can be constructed. // Expects `data` to be non-empty. ExternalRepReleaserPair NewExternalWithUninitializedReleaser( absl::string_view data, ExternalReleaserInvoker invoker, size_t releaser_size); struct Rank1 {}; struct Rank0 : Rank1 {}; template <typename Releaser, typename = ::absl::base_internal::InvokeT< Releaser, absl::string_view>> void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) { ::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data); } template <typename Releaser, typename = ::absl::base_internal::InvokeT<Releaser>> void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) { ::absl::base_internal::Invoke(std::forward<Releaser>(releaser)); } // Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer // to it, or `nullptr` if `data` was empty. template <typename Releaser> // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) { static_assert( #if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__) alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__, #else alignof(Releaser) <= alignof(max_align_t), #endif "Releasers with alignment requirement greater than what is returned by " "default `::operator new()` are not supported."); using ReleaserType = absl::decay_t<Releaser>; if (data.empty()) { // Never create empty external nodes. InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)), data); return nullptr; } auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) { auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser); InvokeReleaser(Rank0{}, std::move(*my_releaser), d); my_releaser->~ReleaserType(); return sizeof(Releaser); }; ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser( data, releaser_invoker, sizeof(releaser)); ::new (external.releaser_address) ReleaserType(std::forward<Releaser>(releaser)); return external.rep; } // Overload for function reference types that dispatches using a function // pointer because there are no `alignof()` or `sizeof()` a function reference. // NOLINTNEXTLINE - suppress clang-tidy raw pointer return. inline CordRep* NewExternalRep(absl::string_view data, void (&releaser)(absl::string_view)) { return NewExternalRep(data, &releaser); } } // namespace cord_internal template <typename Releaser> Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) { Cord cord; cord.contents_.set_tree(::absl::cord_internal::NewExternalRep( data, std::forward<Releaser>(releaser))); return cord; } inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) { cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); } inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) { memcpy(data_, src.data_, sizeof(data_)); memset(src.data_, 0, sizeof(data_)); } inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) { if (this == &src) { return *this; } if (!is_tree() && !src.is_tree()) { cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); return *this; } AssignSlow(src); return *this; } inline Cord::InlineRep& Cord::InlineRep::operator=( Cord::InlineRep&& src) noexcept { if (is_tree()) { ClearSlow(); } memcpy(data_, src.data_, sizeof(data_)); memset(src.data_, 0, sizeof(data_)); return *this; } inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) { if (rhs == this) { return; } Cord::InlineRep tmp; cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_)); cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_)); cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_)); } inline const char* Cord::InlineRep::data() const { return is_tree() ? nullptr : data_; } inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const { if (is_tree()) { absl::cord_internal::CordRep* rep; memcpy(&rep, data_, sizeof(rep)); return rep; } else { return nullptr; } } inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; } inline size_t Cord::InlineRep::size() const { const char tag = data_[kMaxInline]; if (tag <= kMaxInline) return tag; return static_cast<size_t>(tree()->length); } inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) { if (rep == nullptr) { memset(data_, 0, sizeof(data_)); } else { bool was_tree = is_tree(); memcpy(data_, &rep, sizeof(rep)); memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); if (!was_tree) { data_[kMaxInline] = kTreeFlag; } } } inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) { ABSL_ASSERT(is_tree()); if (ABSL_PREDICT_FALSE(rep == nullptr)) { set_tree(rep); return; } memcpy(data_, &rep, sizeof(rep)); memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); } inline absl::cord_internal::CordRep* Cord::InlineRep::clear() { const char tag = data_[kMaxInline]; absl::cord_internal::CordRep* result = nullptr; if (tag > kMaxInline) { memcpy(&result, data_, sizeof(result)); } memset(data_, 0, sizeof(data_)); // Clear the cord return result; } inline void Cord::InlineRep::CopyToArray(char* dst) const { assert(!is_tree()); size_t n = data_[kMaxInline]; assert(n != 0); cord_internal::SmallMemmove(dst, data_, n); } constexpr inline Cord::Cord() noexcept {} inline Cord& Cord::operator=(const Cord& x) { contents_ = x.contents_; return *this; } inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {} inline Cord& Cord::operator=(Cord&& x) noexcept { contents_ = std::move(x.contents_); return *this; } template <typename T, Cord::EnableIfString<T>> inline Cord& Cord::operator=(T&& src) { *this = absl::string_view(src); return *this; } inline size_t Cord::size() const { // Length is 1st field in str.rep_ return contents_.size(); } inline bool Cord::empty() const { return contents_.empty(); } inline size_t Cord::EstimatedMemoryUsage() const { size_t result = sizeof(Cord); if (const absl::cord_internal::CordRep* rep = contents_.tree()) { result += MemoryUsageAux(rep); } return result; } inline absl::optional<absl::string_view> Cord::TryFlat() const { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { return absl::string_view(contents_.data(), contents_.size()); } absl::string_view fragment; if (GetFlatAux(rep, &fragment)) { return fragment; } return absl::nullopt; } inline absl::string_view Cord::Flatten() { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { return absl::string_view(contents_.data(), contents_.size()); } else { absl::string_view already_flat_contents; if (GetFlatAux(rep, &already_flat_contents)) { return already_flat_contents; } } return FlattenSlowPath(); } inline void Cord::Append(absl::string_view src) { contents_.AppendArray(src.data(), src.size()); } template <typename T, Cord::EnableIfString<T>> inline void Cord::Append(T&& src) { // Note that this function reserves the right to reuse the `string&&`'s // memory and that it will do so in the future. Append(absl::string_view(src)); } template <typename T, Cord::EnableIfString<T>> inline void Cord::Prepend(T&& src) { // Note that this function reserves the right to reuse the `string&&`'s // memory and that it will do so in the future. Prepend(absl::string_view(src)); } inline int Cord::Compare(const Cord& rhs) const { if (!contents_.is_tree() && !rhs.contents_.is_tree()) { return contents_.BitwiseCompare(rhs.contents_); } return CompareImpl(rhs); } // Does 'this' cord start/end with rhs inline bool Cord::StartsWith(const Cord& rhs) const { if (contents_.IsSame(rhs.contents_)) return true; size_t rhs_size = rhs.size(); if (size() < rhs_size) return false; return EqualsImpl(rhs, rhs_size); } inline bool Cord::StartsWith(absl::string_view rhs) const { size_t rhs_size = rhs.size(); if (size() < rhs_size) return false; return EqualsImpl(rhs, rhs_size); } inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) : bytes_remaining_(cord->size()) { if (cord->empty()) return; if (cord->contents_.is_tree()) { stack_of_right_children_.push_back(cord->contents_.tree()); operator++(); } else { current_chunk_ = absl::string_view(cord->contents_.data(), cord->size()); } } inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { ChunkIterator tmp(*this); operator++(); return tmp; } inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { return bytes_remaining_ == other.bytes_remaining_; } inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { return !(*this == other); } inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); return current_chunk_; } inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); return ¤t_chunk_; } inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { assert(n < current_chunk_.size()); current_chunk_.remove_prefix(n); bytes_remaining_ -= n; } inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { RemoveChunkPrefix(n); } else if (n != 0) { AdvanceBytesSlowPath(n); } } inline Cord::ChunkIterator Cord::chunk_begin() const { return ChunkIterator(this); } inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } inline Cord::ChunkIterator Cord::ChunkRange::begin() const { return cord_->chunk_begin(); } inline Cord::ChunkIterator Cord::ChunkRange::end() const { return cord_->chunk_end(); } inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } inline Cord::CharIterator& Cord::CharIterator::operator++() { if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) { chunk_iterator_.RemoveChunkPrefix(1); } else { ++chunk_iterator_; } return *this; } inline Cord::CharIterator Cord::CharIterator::operator++(int) { CharIterator tmp(*this); operator++(); return tmp; } inline bool Cord::CharIterator::operator==(const CharIterator& other) const { return chunk_iterator_ == other.chunk_iterator_; } inline bool Cord::CharIterator::operator!=(const CharIterator& other) const { return !(*this == other); } inline Cord::CharIterator::reference Cord::CharIterator::operator*() const { return *chunk_iterator_->data(); } inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const { return chunk_iterator_->data(); } inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) { assert(it != nullptr); return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes); } inline void Cord::Advance(CharIterator* it, size_t n_bytes) { assert(it != nullptr); it->chunk_iterator_.AdvanceBytes(n_bytes); } inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) { return *it.chunk_iterator_; } inline Cord::CharIterator Cord::char_begin() const { return CharIterator(this); } inline Cord::CharIterator Cord::char_end() const { return CharIterator(); } inline Cord::CharIterator Cord::CharRange::begin() const { return cord_->char_begin(); } inline Cord::CharIterator Cord::CharRange::end() const { return cord_->char_end(); } inline Cord::CharRange Cord::Chars() const { return CharRange(this); } inline void Cord::ForEachChunk( absl::FunctionRef<void(absl::string_view)> callback) const { absl::cord_internal::CordRep* rep = contents_.tree(); if (rep == nullptr) { callback(absl::string_view(contents_.data(), contents_.size())); } else { return ForEachChunkAux(rep, callback); } } // Nonmember Cord-to-Cord relational operarators. inline bool operator==(const Cord& lhs, const Cord& rhs) { if (lhs.contents_.IsSame(rhs.contents_)) return true; size_t rhs_size = rhs.size(); if (lhs.size() != rhs_size) return false; return lhs.EqualsImpl(rhs, rhs_size); } inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); } inline bool operator<(const Cord& x, const Cord& y) { return x.Compare(y) < 0; } inline bool operator>(const Cord& x, const Cord& y) { return x.Compare(y) > 0; } inline bool operator<=(const Cord& x, const Cord& y) { return x.Compare(y) <= 0; } inline bool operator>=(const Cord& x, const Cord& y) { return x.Compare(y) >= 0; } // Nonmember Cord-to-absl::string_view relational operators. // // Due to implicit conversions, these also enable comparisons of Cord with // with std::string, ::string, and const char*. inline bool operator==(const Cord& lhs, absl::string_view rhs) { size_t lhs_size = lhs.size(); size_t rhs_size = rhs.size(); if (lhs_size != rhs_size) return false; return lhs.EqualsImpl(rhs, rhs_size); } inline bool operator==(absl::string_view x, const Cord& y) { return y == x; } inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); } inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); } inline bool operator<(const Cord& x, absl::string_view y) { return x.Compare(y) < 0; } inline bool operator<(absl::string_view x, const Cord& y) { return y.Compare(x) > 0; } inline bool operator>(const Cord& x, absl::string_view y) { return y < x; } inline bool operator>(absl::string_view x, const Cord& y) { return y < x; } inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); } inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); } inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); } inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); } // Overload of swap for Cord. The use of non-const references is // required. :( inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); } // Some internals exposed to test code. namespace strings_internal { class CordTestAccess { public: static size_t FlatOverhead(); static size_t MaxFlatLength(); static size_t SizeofCordRepConcat(); static size_t SizeofCordRepExternal(); static size_t SizeofCordRepSubstring(); static size_t FlatTagToLength(uint8_t tag); static uint8_t LengthToTag(size_t s); }; } // namespace strings_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_STRINGS_CORD_H_