// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/random/internal/distribution_impl.h" #include "gtest/gtest.h" #include "absl/base/internal/bits.h" #include "absl/flags/flag.h" #include "absl/numeric/int128.h" ABSL_FLAG(int64_t, absl_random_test_trials, 50000, "Number of trials for the probability tests."); using absl::random_internal::NegativeValueT; using absl::random_internal::PositiveValueT; using absl::random_internal::RandU64ToDouble; using absl::random_internal::RandU64ToFloat; using absl::random_internal::SignedValueT; namespace { TEST(DistributionImplTest, U64ToFloat_Positive_NoZero_Test) { auto ToFloat = [](uint64_t a) { return RandU64ToFloat<PositiveValueT, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 2.710505431e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); } TEST(DistributionImplTest, U64ToFloat_Positive_Zero_Test) { auto ToFloat = [](uint64_t a) { return RandU64ToFloat<PositiveValueT, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0.0); EXPECT_EQ(ToFloat(0x0000000000000001), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); } TEST(DistributionImplTest, U64ToFloat_Negative_NoZero_Test) { auto ToFloat = [](uint64_t a) { return RandU64ToFloat<NegativeValueT, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), -2.710505431e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), -5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000000), -0.5); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } TEST(DistributionImplTest, U64ToFloat_Signed_NoZero_Test) { auto ToFloat = [](uint64_t a) { return RandU64ToFloat<SignedValueT, false>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 5.421010862e-20f); EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f); EXPECT_EQ(ToFloat(0x8000000000000000), -5.421010862e-20f); EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } TEST(DistributionImplTest, U64ToFloat_Signed_Zero_Test) { auto ToFloat = [](uint64_t a) { return RandU64ToFloat<SignedValueT, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0); EXPECT_EQ(ToFloat(0x0000000000000001), 1.084202172e-19f); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 0.9999999404f); EXPECT_EQ(ToFloat(0x8000000000000000), 0); EXPECT_EQ(ToFloat(0x8000000000000001), -1.084202172e-19f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), -0.9999999404f); } TEST(DistributionImplTest, U64ToFloat_Signed_Bias_Test) { auto ToFloat = [](uint64_t a) { return RandU64ToFloat<SignedValueT, true, 1>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0); EXPECT_EQ(ToFloat(0x0000000000000001), 2 * 1.084202172e-19f); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), 2 * 0.9999999404f); EXPECT_EQ(ToFloat(0x8000000000000000), 0); EXPECT_EQ(ToFloat(0x8000000000000001), 2 * -1.084202172e-19f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 2 * -0.9999999404f); } TEST(DistributionImplTest, U64ToFloatTest) { auto ToFloat = [](uint64_t a) -> float { return RandU64ToFloat<PositiveValueT, true>(a); }; EXPECT_EQ(ToFloat(0x0000000000000000), 0.0f); EXPECT_EQ(ToFloat(0x8000000000000000), 0.5f); EXPECT_EQ(ToFloat(0x8000000000000001), 0.5f); EXPECT_EQ(ToFloat(0x800000FFFFFFFFFF), 0.5f); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), 0.9999999404f); EXPECT_GT(ToFloat(0x0000000000000001), 0.0f); EXPECT_NE(ToFloat(0x7FFFFF0000000000), ToFloat(0x7FFFFEFFFFFFFFFF)); EXPECT_LT(ToFloat(0xFFFFFFFFFFFFFFFF), 1.0f); int32_t two_to_24 = 1 << 24; EXPECT_EQ(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24), two_to_24 - 1); EXPECT_NE(static_cast<int32_t>(ToFloat(0xFFFFFFFFFFFFFFFF) * two_to_24 * 2), two_to_24 * 2 - 1); EXPECT_EQ(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFF0000000000)); EXPECT_NE(ToFloat(0xFFFFFFFFFFFFFFFF), ToFloat(0xFFFFFEFFFFFFFFFF)); EXPECT_EQ(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF8000000000)); EXPECT_NE(ToFloat(0x7FFFFFFFFFFFFFFF), ToFloat(0x7FFFFF7FFFFFFFFF)); EXPECT_EQ(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFC000000000)); EXPECT_NE(ToFloat(0x3FFFFFFFFFFFFFFF), ToFloat(0x3FFFFFBFFFFFFFFF)); // For values where every bit counts, the values scale as multiples of the // input. for (int i = 0; i < 100; ++i) { EXPECT_EQ(i * ToFloat(0x0000000000000001), ToFloat(i)); } // For each i: value generated from (1 << i). float exp_values[64]; exp_values[63] = 0.5f; for (int i = 62; i >= 0; --i) exp_values[i] = 0.5f * exp_values[i + 1]; constexpr uint64_t one = 1; for (int i = 0; i < 64; ++i) { EXPECT_EQ(ToFloat(one << i), exp_values[i]); for (int j = 1; j < FLT_MANT_DIG && i - j >= 0; ++j) { EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToFloat((one << i) + (one << (i - j))), exp_values[i] + exp_values[i - j]); } for (int j = FLT_MANT_DIG; i - j >= 0; ++j) { EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToFloat((one << i) + (one << (i - j))), exp_values[i]); } } } TEST(DistributionImplTest, U64ToDouble_Positive_NoZero_Test) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<PositiveValueT, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 2.710505431213761085e-20); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000002), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); } TEST(DistributionImplTest, U64ToDouble_Positive_Zero_Test) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<PositiveValueT, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); } TEST(DistributionImplTest, U64ToDouble_Negative_NoZero_Test) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<NegativeValueT, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), -2.710505431213761085e-20); EXPECT_EQ(ToDouble(0x0000000000000001), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000002), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), -0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } TEST(DistributionImplTest, U64ToDouble_Signed_NoZero_Test) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<SignedValueT, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978); EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } TEST(DistributionImplTest, U64ToDouble_Signed_Zero_Test) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<SignedValueT, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978); EXPECT_EQ(ToDouble(0x8000000000000000), 0); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978); } TEST(DistributionImplTest, U64ToDouble_Signed_Bias_Test) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<SignedValueT, true, -1>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19 / 2); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), 0.999999999999999888978 / 2); EXPECT_EQ(ToDouble(0x8000000000000000), 0); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19 / 2); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), -0.999999999999999888978 / 2); } TEST(DistributionImplTest, U64ToDoubleTest) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<PositiveValueT, true>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000000), 0.0); EXPECT_EQ(ToDouble(0x0000000000000001), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x7fffffffffffffef), 0.499999999999999944489); EXPECT_EQ(ToDouble(0x8000000000000000), 0.5); // For values > 0.5, RandU64ToDouble discards up to 11 bits. (64-53). EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0x80000000000007FF), 0.5); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), 0.999999999999999888978); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF)); EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFF), 1.0); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF800)); EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFF), ToDouble(0xFFFFFFFFFFFFF7FF)); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00)); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFBFF)); EXPECT_EQ(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFE00)); EXPECT_NE(ToDouble(0x3FFFFFFFFFFFFFFF), ToDouble(0x3FFFFFFFFFFFFDFF)); EXPECT_EQ(ToDouble(0x1000000000000001), 0.0625); EXPECT_EQ(ToDouble(0x2000000000000001), 0.125); EXPECT_EQ(ToDouble(0x3000000000000001), 0.1875); EXPECT_EQ(ToDouble(0x4000000000000001), 0.25); EXPECT_EQ(ToDouble(0x5000000000000001), 0.3125); EXPECT_EQ(ToDouble(0x6000000000000001), 0.375); EXPECT_EQ(ToDouble(0x7000000000000001), 0.4375); EXPECT_EQ(ToDouble(0x8000000000000001), 0.5); EXPECT_EQ(ToDouble(0x9000000000000001), 0.5625); EXPECT_EQ(ToDouble(0xa000000000000001), 0.625); EXPECT_EQ(ToDouble(0xb000000000000001), 0.6875); EXPECT_EQ(ToDouble(0xc000000000000001), 0.75); EXPECT_EQ(ToDouble(0xd000000000000001), 0.8125); EXPECT_EQ(ToDouble(0xe000000000000001), 0.875); EXPECT_EQ(ToDouble(0xf000000000000001), 0.9375); // Large powers of 2. int64_t two_to_53 = int64_t{1} << 53; EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53), two_to_53 - 1); EXPECT_NE(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53 * 2), two_to_53 * 2 - 1); // For values where every bit counts, the values scale as multiples of the // input. for (int i = 0; i < 100; ++i) { EXPECT_EQ(i * ToDouble(0x0000000000000001), ToDouble(i)); } // For each i: value generated from (1 << i). double exp_values[64]; exp_values[63] = 0.5; for (int i = 62; i >= 0; --i) exp_values[i] = 0.5 * exp_values[i + 1]; constexpr uint64_t one = 1; for (int i = 0; i < 64; ++i) { EXPECT_EQ(ToDouble(one << i), exp_values[i]); for (int j = 1; j < DBL_MANT_DIG && i - j >= 0; ++j) { EXPECT_NE(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToDouble((one << i) + (one << (i - j))), exp_values[i] + exp_values[i - j]); } for (int j = DBL_MANT_DIG; i - j >= 0; ++j) { EXPECT_EQ(exp_values[i] + exp_values[i - j], exp_values[i]); EXPECT_EQ(ToDouble((one << i) + (one << (i - j))), exp_values[i]); } } } TEST(DistributionImplTest, U64ToDoubleSignedTest) { auto ToDouble = [](uint64_t a) { return RandU64ToDouble<SignedValueT, false>(a); }; EXPECT_EQ(ToDouble(0x0000000000000000), 5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x0000000000000001), 1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x8000000000000000), -5.42101086242752217004e-20); EXPECT_EQ(ToDouble(0x8000000000000001), -1.084202172485504434e-19); const double e_plus = ToDouble(0x0000000000000001); const double e_minus = ToDouble(0x8000000000000001); EXPECT_EQ(e_plus, 1.084202172485504434e-19); EXPECT_EQ(e_minus, -1.084202172485504434e-19); EXPECT_EQ(ToDouble(0x3fffffffffffffef), 0.499999999999999944489); EXPECT_EQ(ToDouble(0xbfffffffffffffef), -0.499999999999999944489); // For values > 0.5, RandU64ToDouble discards up to 10 bits. (63-53). EXPECT_EQ(ToDouble(0x4000000000000000), 0.5); EXPECT_EQ(ToDouble(0x4000000000000001), 0.5); EXPECT_EQ(ToDouble(0x40000000000003FF), 0.5); EXPECT_EQ(ToDouble(0xC000000000000000), -0.5); EXPECT_EQ(ToDouble(0xC000000000000001), -0.5); EXPECT_EQ(ToDouble(0xC0000000000003FF), -0.5); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFe), 0.999999999999999888978); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999999999888978); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFF800), ToDouble(0x7FFFFFFFFFFFF7FF)); EXPECT_LT(ToDouble(0x7FFFFFFFFFFFFFFF), 1.0); EXPECT_GT(ToDouble(0x7FFFFFFFFFFFFFFF), 0.9999999999); EXPECT_GT(ToDouble(0xFFFFFFFFFFFFFFFe), -1.0); EXPECT_LT(ToDouble(0xFFFFFFFFFFFFFFFe), -0.999999999); EXPECT_EQ(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFFC00)); EXPECT_EQ(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFFC00)); EXPECT_NE(ToDouble(0xFFFFFFFFFFFFFFFe), ToDouble(0xFFFFFFFFFFFFF3FF)); EXPECT_NE(ToDouble(0x7FFFFFFFFFFFFFFF), ToDouble(0x7FFFFFFFFFFFF3FF)); EXPECT_EQ(ToDouble(0x1000000000000001), 0.125); EXPECT_EQ(ToDouble(0x2000000000000001), 0.25); EXPECT_EQ(ToDouble(0x3000000000000001), 0.375); EXPECT_EQ(ToDouble(0x4000000000000001), 0.5); EXPECT_EQ(ToDouble(0x5000000000000001), 0.625); EXPECT_EQ(ToDouble(0x6000000000000001), 0.75); EXPECT_EQ(ToDouble(0x7000000000000001), 0.875); EXPECT_EQ(ToDouble(0x7800000000000001), 0.9375); EXPECT_EQ(ToDouble(0x7c00000000000001), 0.96875); EXPECT_EQ(ToDouble(0x7e00000000000001), 0.984375); EXPECT_EQ(ToDouble(0x7f00000000000001), 0.9921875); // 0x8000000000000000 ~= 0 EXPECT_EQ(ToDouble(0x9000000000000001), -0.125); EXPECT_EQ(ToDouble(0xa000000000000001), -0.25); EXPECT_EQ(ToDouble(0xb000000000000001), -0.375); EXPECT_EQ(ToDouble(0xc000000000000001), -0.5); EXPECT_EQ(ToDouble(0xd000000000000001), -0.625); EXPECT_EQ(ToDouble(0xe000000000000001), -0.75); EXPECT_EQ(ToDouble(0xf000000000000001), -0.875); // Large powers of 2. int64_t two_to_53 = int64_t{1} << 53; EXPECT_EQ(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53), two_to_53 - 1); EXPECT_EQ(static_cast<int64_t>(ToDouble(0xFFFFFFFFFFFFFFFF) * two_to_53), -(two_to_53 - 1)); EXPECT_NE(static_cast<int64_t>(ToDouble(0x7FFFFFFFFFFFFFFF) * two_to_53 * 2), two_to_53 * 2 - 1); // For values where every bit counts, the values scale as multiples of the // input. for (int i = 1; i < 100; ++i) { EXPECT_EQ(i * e_plus, ToDouble(i)) << i; EXPECT_EQ(i * e_minus, ToDouble(0x8000000000000000 | i)) << i; } } TEST(DistributionImplTest, ExhaustiveFloat) { using absl::base_internal::CountLeadingZeros64; auto ToFloat = [](uint64_t a) { return RandU64ToFloat<PositiveValueT, true>(a); }; // Rely on RandU64ToFloat generating values from greatest to least when // supplied with uint64_t values from greatest (0xfff...) to least (0x0). Thus, // this algorithm stores the previous value, and if the new value is at // greater than or equal to the previous value, then there is a collision in // the generation algorithm. // // Use the computation below to convert the random value into a result: // double res = a() * (1.0f - sample) + b() * sample; float last_f = 1.0, last_g = 2.0; uint64_t f_collisions = 0, g_collisions = 0; uint64_t f_unique = 0, g_unique = 0; uint64_t total = 0; auto count = [&](const float r) { total++; // `f` is mapped to the range [0, 1) (default) const float f = 0.0f * (1.0f - r) + 1.0f * r; if (f >= last_f) { f_collisions++; } else { f_unique++; last_f = f; } // `g` is mapped to the range [1, 2) const float g = 1.0f * (1.0f - r) + 2.0f * r; if (g >= last_g) { g_collisions++; } else { g_unique++; last_g = g; } }; size_t limit = absl::GetFlag(FLAGS_absl_random_test_trials); // Generate all uint64_t which have unique floating point values. // Counting down from 0xFFFFFFFFFFFFFFFFu ... 0x0u uint64_t x = ~uint64_t(0); for (; x != 0 && limit > 0;) { constexpr int kDig = (64 - FLT_MANT_DIG); // Set a decrement value & the next point at which to change // the decrement value. By default these are 1, 0. uint64_t dec = 1; uint64_t chk = 0; // Adjust decrement and check value based on how many leading 0 // bits are set in the current value. const int clz = CountLeadingZeros64(x); if (clz < kDig) { dec <<= (kDig - clz); chk = (~uint64_t(0)) >> (clz + 1); } for (; x > chk && limit > 0; x -= dec) { count(ToFloat(x)); --limit; } } static_assert(FLT_MANT_DIG == 24, "The float type is expected to have a 24 bit mantissa."); if (limit != 0) { // There are between 2^28 and 2^29 unique values in the range [0, 1). For // the low values of x, there are 2^24 -1 unique values. Once x > 2^24, // there are 40 * 2^24 unique values. Thus: // (2 + 4 + 8 ... + 2^23) + 40 * 2^23 EXPECT_LT(1 << 28, f_unique); EXPECT_EQ((1 << 24) + 40 * (1 << 23) - 1, f_unique); EXPECT_EQ(total, f_unique); EXPECT_EQ(0, f_collisions); // Expect at least 2^23 unique values for the range [1, 2) EXPECT_LE(1 << 23, g_unique); EXPECT_EQ(total - g_unique, g_collisions); } } } // namespace