// Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/numeric/int128.h" #include #include #include #include // NOLINT(readability/streams) #include #include namespace absl { const uint128 kuint128max = MakeUint128(std::numeric_limits::max(), std::numeric_limits::max()); namespace { // Returns the 0-based position of the last set bit (i.e., most significant bit) // in the given uint64_t. The argument may not be 0. // // For example: // Given: 5 (decimal) == 101 (binary) // Returns: 2 #define STEP(T, n, pos, sh) \ do { \ if ((n) >= (static_cast(1) << (sh))) { \ (n) = (n) >> (sh); \ (pos) |= (sh); \ } \ } while (0) static inline int Fls64(uint64_t n) { assert(n != 0); int pos = 0; STEP(uint64_t, n, pos, 0x20); uint32_t n32 = static_cast(n); STEP(uint32_t, n32, pos, 0x10); STEP(uint32_t, n32, pos, 0x08); STEP(uint32_t, n32, pos, 0x04); return pos + ((uint64_t{0x3333333322221100} >> (n32 << 2)) & 0x3); } #undef STEP // Like Fls64() above, but returns the 0-based position of the last set bit // (i.e., most significant bit) in the given uint128. The argument may not be 0. static inline int Fls128(uint128 n) { if (uint64_t hi = Uint128High64(n)) { return Fls64(hi) + 64; } return Fls64(Uint128Low64(n)); } // Long division/modulo for uint128 implemented using the shift-subtract // division algorithm adapted from: // http://stackoverflow.com/questions/5386377/division-without-using void DivModImpl(uint128 dividend, uint128 divisor, uint128* quotient_ret, uint128* remainder_ret) { assert(divisor != 0); if (divisor > dividend) { *quotient_ret = 0; *remainder_ret = dividend; return; } if (divisor == dividend) { *quotient_ret = 1; *remainder_ret = 0; return; } uint128 denominator = divisor; uint128 quotient = 0; // Left aligns the MSB of the denominator and the dividend. const int shift = Fls128(dividend) - Fls128(denominator); denominator <<= shift; // Uses shift-subtract algorithm to divide dividend by denominator. The // remainder will be left in dividend. for (int i = 0; i <= shift; ++i) { quotient <<= 1; if (dividend >= denominator) { dividend -= denominator; quotient |= 1; } denominator >>= 1; } *quotient_ret = quotient; *remainder_ret = dividend; } template uint128 Initialize128FromFloat(T v) { // Rounding behavior is towards zero, same as for built-in types. // Undefined behavior if v is NaN or cannot fit into uint128. assert(!std::isnan(v) && v > -1 && v < std::ldexp(static_cast(1), 128)); if (v >= std::ldexp(static_cast(1), 64)) { uint64_t hi = static_cast(std::ldexp(v, -64)); uint64_t lo = static_cast(v - std::ldexp(static_cast(hi), 64)); return MakeUint128(hi, lo); } return MakeUint128(0, static_cast(v)); } } // namespace uint128::uint128(float v) : uint128(Initialize128FromFloat(v)) {} uint128::uint128(double v) : uint128(Initialize128FromFloat(v)) {} uint128::uint128(long double v) : uint128(Initialize128FromFloat(v)) {} uint128& uint128::operator/=(const uint128& divisor) { uint128 quotient = 0; uint128 remainder = 0; DivModImpl(*this, divisor, "ient, &remainder); *this = quotient; return *this; } uint128& uint128::operator%=(const uint128& divisor) { uint128 quotient = 0; uint128 remainder = 0; DivModImpl(*this, divisor, "ient, &remainder); *this = remainder; return *this; } std::ostream& operator<<(std::ostream& o, const uint128& b) { std::ios_base::fmtflags flags = o.flags(); // Select a divisor which is the largest power of the base < 2^64. uint128 div; int div_base_log; switch (flags & std::ios::basefield) { case std::ios::hex: div = 0x1000000000000000; // 16^15 div_base_log = 15; break; case std::ios::oct: div = 01000000000000000000000; // 8^21 div_base_log = 21; break; default: // std::ios::dec div = 10000000000000000000u; // 10^19 div_base_log = 19; break; } // Now piece together the uint128 representation from three chunks of // the original value, each less than "div" and therefore representable // as a uint64_t. std::ostringstream os; std::ios_base::fmtflags copy_mask = std::ios::basefield | std::ios::showbase | std::ios::uppercase; os.setf(flags & copy_mask, copy_mask); uint128 high = b; uint128 low; DivModImpl(high, div, &high, &low); uint128 mid; DivModImpl(high, div, &high, &mid); if (Uint128Low64(high) != 0) { os << Uint128Low64(high); os << std::noshowbase << std::setfill('0') << std::setw(div_base_log); os << Uint128Low64(mid); os << std::setw(div_base_log); } else if (Uint128Low64(mid) != 0) { os << Uint128Low64(mid); os << std::noshowbase << std::setfill('0') << std::setw(div_base_log); } os << Uint128Low64(low); std::string rep = os.str(); // Add the requisite padding. std::streamsize width = o.width(0); if (static_cast(width) > rep.size()) { std::ios::fmtflags adjustfield = flags & std::ios::adjustfield; if (adjustfield == std::ios::left) { rep.append(width - rep.size(), o.fill()); } else if (adjustfield == std::ios::internal && (flags & std::ios::showbase) && (flags & std::ios::basefield) == std::ios::hex && b != 0) { rep.insert(2, width - rep.size(), o.fill()); } else { rep.insert(0, width - rep.size(), o.fill()); } } // Stream the final representation in a single "<<" call. return o << rep; } } // namespace absl