// // Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifndef ABSL_FLAGS_INTERNAL_FLAG_H_ #define ABSL_FLAGS_INTERNAL_FLAG_H_ #include <stdint.h> #include <atomic> #include <cstring> #include <memory> #include <string> #include <type_traits> #include "absl/base/config.h" #include "absl/base/thread_annotations.h" #include "absl/flags/config.h" #include "absl/flags/internal/commandlineflag.h" #include "absl/flags/internal/registry.h" #include "absl/memory/memory.h" #include "absl/strings/str_cat.h" #include "absl/strings/string_view.h" #include "absl/synchronization/mutex.h" namespace absl { ABSL_NAMESPACE_BEGIN namespace flags_internal { template <typename T> class Flag; /////////////////////////////////////////////////////////////////////////////// // Persistent state of the flag data. template <typename T> class FlagState : public flags_internal::FlagStateInterface { public: FlagState(Flag<T>* flag, T&& cur, bool modified, bool on_command_line, int64_t counter) : flag_(flag), cur_value_(std::move(cur)), modified_(modified), on_command_line_(on_command_line), counter_(counter) {} ~FlagState() override = default; private: friend class Flag<T>; // Restores the flag to the saved state. void Restore() const override; // Flag and saved flag data. Flag<T>* flag_; T cur_value_; bool modified_; bool on_command_line_; int64_t counter_; }; /////////////////////////////////////////////////////////////////////////////// // Flag help auxiliary structs. // This is help argument for absl::Flag encapsulating the string literal pointer // or pointer to function generating it as well as enum descriminating two // cases. using HelpGenFunc = std::string (*)(); union FlagHelpMsg { constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {} constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {} const char* literal; HelpGenFunc gen_func; }; enum class FlagHelpKind : int8_t { kLiteral, kGenFunc }; struct FlagHelpArg { FlagHelpMsg source; FlagHelpKind kind; }; extern const char kStrippedFlagHelp[]; // HelpConstexprWrap is used by struct AbslFlagHelpGenFor##name generated by // ABSL_FLAG macro. It is only used to silence the compiler in the case where // help message expression is not constexpr and does not have type const char*. // If help message expression is indeed constexpr const char* HelpConstexprWrap // is just a trivial identity function. template <typename T> const char* HelpConstexprWrap(const T&) { return nullptr; } constexpr const char* HelpConstexprWrap(const char* p) { return p; } constexpr const char* HelpConstexprWrap(char* p) { return p; } // These two HelpArg overloads allows us to select at compile time one of two // way to pass Help argument to absl::Flag. We'll be passing // AbslFlagHelpGenFor##name as T and integer 0 as a single argument to prefer // first overload if possible. If T::Const is evaluatable on constexpr // context (see non template int parameter below) we'll choose first overload. // In this case the help message expression is immediately evaluated and is used // to construct the absl::Flag. No additionl code is generated by ABSL_FLAG. // Otherwise SFINAE kicks in and first overload is dropped from the // consideration, in which case the second overload will be used. The second // overload does not attempt to evaluate the help message expression // immediately and instead delays the evaluation by returing the function // pointer (&T::NonConst) genering the help message when necessary. This is // evaluatable in constexpr context, but the cost is an extra function being // generated in the ABSL_FLAG code. template <typename T, int = (T::Const(), 1)> constexpr FlagHelpArg HelpArg(int) { return {FlagHelpMsg(T::Const()), FlagHelpKind::kLiteral}; } template <typename T> constexpr FlagHelpArg HelpArg(char) { return {FlagHelpMsg(&T::NonConst), FlagHelpKind::kGenFunc}; } /////////////////////////////////////////////////////////////////////////////// // Flag default value auxiliary structs. // Signature for the function generating the initial flag value (usually // based on default value supplied in flag's definition) using FlagDfltGenFunc = void* (*)(); union FlagDefaultSrc { constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg) : gen_func(gen_func_arg) {} void* dynamic_value; FlagDfltGenFunc gen_func; }; enum class FlagDefaultSrcKind : int8_t { kDynamicValue, kGenFunc }; /////////////////////////////////////////////////////////////////////////////// // Flag current value auxiliary structs. // The minimum atomic size we believe to generate lock free code, i.e. all // trivially copyable types not bigger this size generate lock free code. static constexpr int kMinLockFreeAtomicSize = 8; // The same as kMinLockFreeAtomicSize but maximum atomic size. As double words // might use two registers, we want to dispatch the logic for them. #if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD) static constexpr int kMaxLockFreeAtomicSize = 16; #else static constexpr int kMaxLockFreeAtomicSize = 8; #endif // We can use atomic in cases when it fits in the register, trivially copyable // in order to make memcpy operations. template <typename T> struct IsAtomicFlagTypeTrait { static constexpr bool value = (sizeof(T) <= kMaxLockFreeAtomicSize && type_traits_internal::is_trivially_copyable<T>::value); }; // Clang does not always produce cmpxchg16b instruction when alignment of a 16 // bytes type is not 16. struct alignas(16) FlagsInternalTwoWordsType { int64_t first; int64_t second; }; constexpr bool operator==(const FlagsInternalTwoWordsType& that, const FlagsInternalTwoWordsType& other) { return that.first == other.first && that.second == other.second; } constexpr bool operator!=(const FlagsInternalTwoWordsType& that, const FlagsInternalTwoWordsType& other) { return !(that == other); } constexpr int64_t SmallAtomicInit() { return 0xababababababababll; } template <typename T, typename S = void> struct BestAtomicType { using type = int64_t; static constexpr int64_t AtomicInit() { return SmallAtomicInit(); } }; template <typename T> struct BestAtomicType< T, typename std::enable_if<(kMinLockFreeAtomicSize < sizeof(T) && sizeof(T) <= kMaxLockFreeAtomicSize), void>::type> { using type = FlagsInternalTwoWordsType; static constexpr FlagsInternalTwoWordsType AtomicInit() { return {SmallAtomicInit(), SmallAtomicInit()}; } }; struct FlagValue { // Heap allocated value. void* dynamic = nullptr; // For some types, a copy of the current value is kept in an atomically // accessible field. union Atomics { // Using small atomic for small types. std::atomic<int64_t> small_atomic; template <typename T, typename K = typename std::enable_if< (sizeof(T) <= kMinLockFreeAtomicSize), void>::type> int64_t load() const { return small_atomic.load(std::memory_order_acquire); } #if defined(ABSL_FLAGS_INTERNAL_ATOMIC_DOUBLE_WORD) // Using big atomics for big types. std::atomic<FlagsInternalTwoWordsType> big_atomic; template <typename T, typename K = typename std::enable_if< (kMinLockFreeAtomicSize < sizeof(T) && sizeof(T) <= kMaxLockFreeAtomicSize), void>::type> FlagsInternalTwoWordsType load() const { return big_atomic.load(std::memory_order_acquire); } constexpr Atomics() : big_atomic{FlagsInternalTwoWordsType{SmallAtomicInit(), SmallAtomicInit()}} {} #else constexpr Atomics() : small_atomic{SmallAtomicInit()} {} #endif }; Atomics atomics{}; }; /////////////////////////////////////////////////////////////////////////////// // Flag callback auxiliary structs. // Signature for the mutation callback used by watched Flags // The callback is noexcept. // TODO(rogeeff): add noexcept after C++17 support is added. using FlagCallbackFunc = void (*)(); struct FlagCallback { FlagCallbackFunc func; absl::Mutex guard; // Guard for concurrent callback invocations. }; /////////////////////////////////////////////////////////////////////////////// // Flag implementation, which does not depend on flag value type. // The class encapsulates the Flag's data and access to it. struct DynValueDeleter { explicit DynValueDeleter(FlagOpFn op_arg = nullptr) : op(op_arg) {} void operator()(void* ptr) const { if (op != nullptr) Delete(op, ptr); } const FlagOpFn op; }; class FlagImpl { public: constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op, FlagMarshallingOpFn marshalling_op, FlagHelpArg help, FlagDfltGenFunc default_value_gen) : name_(name), filename_(filename), op_(op), marshalling_op_(marshalling_op), help_(help.source), help_source_kind_(help.kind), def_kind_(FlagDefaultSrcKind::kGenFunc), default_src_(default_value_gen), data_guard_{} {} // Forces destruction of the Flag's data. void Destroy(); // Constant access methods absl::string_view Name() const; std::string Filename() const; std::string Help() const; bool IsModified() const ABSL_LOCKS_EXCLUDED(*DataGuard()); bool IsSpecifiedOnCommandLine() const ABSL_LOCKS_EXCLUDED(*DataGuard()); std::string DefaultValue() const ABSL_LOCKS_EXCLUDED(*DataGuard()); std::string CurrentValue() const ABSL_LOCKS_EXCLUDED(*DataGuard()); void Read(void* dst, const FlagOpFn dst_op) const ABSL_LOCKS_EXCLUDED(*DataGuard()); // Attempts to parse supplied `value` std::string. If parsing is successful, then // it replaces `dst` with the new value. bool TryParse(void** dst, absl::string_view value, std::string* err) const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); #ifndef NDEBUG template <typename T> void Get(T* dst) const { Read(dst, &FlagOps<T>); } #else template <typename T, typename std::enable_if< !IsAtomicFlagTypeTrait<T>::value, int>::type = 0> void Get(T* dst) const { Read(dst, &FlagOps<T>); } // Overload for `GetFlag()` for types that support lock-free reads. template <typename T, typename std::enable_if<IsAtomicFlagTypeTrait<T>::value, int>::type = 0> void Get(T* dst) const { using U = BestAtomicType<T>; const typename U::type r = value_.atomics.template load<T>(); if (r != U::AtomicInit()) { std::memcpy(static_cast<void*>(dst), &r, sizeof(T)); } else { Read(dst, &FlagOps<T>); } } #endif // Mutating access methods void Write(const void* src, const FlagOpFn src_op) ABSL_LOCKS_EXCLUDED(*DataGuard()); bool SetFromString(absl::string_view value, FlagSettingMode set_mode, ValueSource source, std::string* err) ABSL_LOCKS_EXCLUDED(*DataGuard()); // If possible, updates copy of the Flag's value that is stored in an // atomic word. void StoreAtomic() ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Interfaces to operate on callbacks. void SetCallback(const FlagCallbackFunc mutation_callback) ABSL_LOCKS_EXCLUDED(*DataGuard()); void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Interfaces to save/restore mutable flag data template <typename T> std::unique_ptr<FlagStateInterface> SaveState(Flag<T>* flag) const ABSL_LOCKS_EXCLUDED(*DataGuard()) { T&& cur_value = flag->Get(); absl::MutexLock l(DataGuard()); return absl::make_unique<FlagState<T>>( flag, std::move(cur_value), modified_, on_command_line_, counter_); } bool RestoreState(const void* value, bool modified, bool on_command_line, int64_t counter) ABSL_LOCKS_EXCLUDED(*DataGuard()); // Value validation interfaces. void CheckDefaultValueParsingRoundtrip() const ABSL_LOCKS_EXCLUDED(*DataGuard()); bool ValidateInputValue(absl::string_view value) const ABSL_LOCKS_EXCLUDED(*DataGuard()); private: // Ensures that `data_guard_` is initialized and returns it. absl::Mutex* DataGuard() const ABSL_LOCK_RETURNED((absl::Mutex*)&data_guard_); // Returns heap allocated value of type T initialized with default value. std::unique_ptr<void, DynValueDeleter> MakeInitValue() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()); // Lazy initialization of the Flag's data. void Init(); // Immutable flag's state. // Flags name passed to ABSL_FLAG as second arg. const char* const name_; // The file name where ABSL_FLAG resides. const char* const filename_; // Type-specific handler. const FlagOpFn op_; // Marshalling ops handler. const FlagMarshallingOpFn marshalling_op_; // Help message literal or function to generate it. const FlagHelpMsg help_; // Indicates if help message was supplied as literal or generator func. const FlagHelpKind help_source_kind_; // Indicates that the Flag state is initialized. std::atomic<bool> inited_{false}; // Mutable flag's state (guarded by `data_guard_`). // Protects against multiple concurrent constructions of `data_guard_`. bool is_data_guard_inited_ = false; // Has this flag's value been modified? bool modified_ ABSL_GUARDED_BY(*DataGuard()) = false; // Has this flag been specified on command line. bool on_command_line_ ABSL_GUARDED_BY(*DataGuard()) = false; // Mutation counter int64_t counter_ ABSL_GUARDED_BY(*DataGuard()) = 0; // Optional flag's callback and absl::Mutex to guard the invocations. FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard()) = nullptr; // If def_kind_ == kDynamicValue, default_src_ holds a dynamically allocated // value. FlagDefaultSrcKind def_kind_ ABSL_GUARDED_BY(*DataGuard()); // Either a pointer to the function generating the default value based on the // value specified in ABSL_FLAG or pointer to the dynamically set default // value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish // these two cases. FlagDefaultSrc default_src_ ABSL_GUARDED_BY(*DataGuard()); // Current Flag Value FlagValue value_; // This is reserved space for an absl::Mutex to guard flag data. It will be // initialized in FlagImpl::Init via placement new. // We can't use "absl::Mutex data_guard_", since this class is not literal. // We do not want to use "absl::Mutex* data_guard_", since this would require // heap allocation during initialization, which is both slows program startup // and can fail. Using reserved space + placement new allows us to avoid both // problems. alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)]; }; /////////////////////////////////////////////////////////////////////////////// // The "unspecified" implementation of Flag object parameterized by the // flag's value type. template <typename T> class Flag final : public flags_internal::CommandLineFlag { public: constexpr Flag(const char* name, const char* filename, const FlagMarshallingOpFn marshalling_op, const FlagHelpArg help, const FlagDfltGenFunc default_value_gen) : impl_(name, filename, &FlagOps<T>, marshalling_op, help, default_value_gen) {} T Get() const { // See implementation notes in CommandLineFlag::Get(). union U { T value; U() {} ~U() { value.~T(); } }; U u; impl_.Get(&u.value); return std::move(u.value); } void Set(const T& v) { impl_.Write(&v, &FlagOps<T>); } void SetCallback(const FlagCallbackFunc mutation_callback) { impl_.SetCallback(mutation_callback); } // CommandLineFlag interface absl::string_view Name() const override { return impl_.Name(); } std::string Filename() const override { return impl_.Filename(); } absl::string_view Typename() const override { return ""; } std::string Help() const override { return impl_.Help(); } bool IsModified() const override { return impl_.IsModified(); } bool IsSpecifiedOnCommandLine() const override { return impl_.IsSpecifiedOnCommandLine(); } std::string DefaultValue() const override { return impl_.DefaultValue(); } std::string CurrentValue() const override { return impl_.CurrentValue(); } bool ValidateInputValue(absl::string_view value) const override { return impl_.ValidateInputValue(value); } // Interfaces to save and restore flags to/from persistent state. // Returns current flag state or nullptr if flag does not support // saving and restoring a state. std::unique_ptr<FlagStateInterface> SaveState() override { return impl_.SaveState(this); } // Restores the flag state to the supplied state object. If there is // nothing to restore returns false. Otherwise returns true. bool RestoreState(const FlagState<T>& flag_state) { return impl_.RestoreState(&flag_state.cur_value_, flag_state.modified_, flag_state.on_command_line_, flag_state.counter_); } bool SetFromString(absl::string_view value, FlagSettingMode set_mode, ValueSource source, std::string* error) override { return impl_.SetFromString(value, set_mode, source, error); } void CheckDefaultValueParsingRoundtrip() const override { impl_.CheckDefaultValueParsingRoundtrip(); } private: friend class FlagState<T>; void Destroy() override { impl_.Destroy(); } void Read(void* dst) const override { impl_.Read(dst, &FlagOps<T>); } FlagOpFn TypeId() const override { return &FlagOps<T>; } // Flag's implementation with value type abstracted out. FlagImpl impl_; }; template <typename T> inline void FlagState<T>::Restore() const { if (flag_->RestoreState(*this)) { ABSL_INTERNAL_LOG(INFO, absl::StrCat("Restore saved value of ", flag_->Name(), " to: ", flag_->CurrentValue())); } } // This class facilitates Flag object registration and tail expression-based // flag definition, for example: // ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher); template <typename T, bool do_register> class FlagRegistrar { public: explicit FlagRegistrar(Flag<T>* flag) : flag_(flag) { if (do_register) flags_internal::RegisterCommandLineFlag(flag_); } FlagRegistrar& OnUpdate(FlagCallbackFunc cb) && { flag_->SetCallback(cb); return *this; } // Make the registrar "die" gracefully as a bool on a line where registration // happens. Registrar objects are intended to live only as temporary. operator bool() const { return true; } // NOLINT private: Flag<T>* flag_; // Flag being registered (not owned). }; // This struct and corresponding overload to MakeDefaultValue are used to // facilitate usage of {} as default value in ABSL_FLAG macro. struct EmptyBraces {}; template <typename T> T* MakeFromDefaultValue(T t) { return new T(std::move(t)); } template <typename T> T* MakeFromDefaultValue(EmptyBraces) { return new T; } } // namespace flags_internal ABSL_NAMESPACE_END } // namespace absl #endif // ABSL_FLAGS_INTERNAL_FLAG_H_