// Copyright 2019 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // https://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "absl/container/fixed_array.h" #include <stdio.h> #include <cstring> #include <list> #include <memory> #include <numeric> #include <scoped_allocator> #include <stdexcept> #include <string> #include <vector> #include "gmock/gmock.h" #include "gtest/gtest.h" #include "absl/base/internal/exception_testing.h" #include "absl/hash/hash_testing.h" #include "absl/memory/memory.h" using ::testing::ElementsAreArray; namespace { // Helper routine to determine if a absl::FixedArray used stack allocation. template <typename ArrayType> static bool IsOnStack(const ArrayType& a) { return a.size() <= ArrayType::inline_elements; } class ConstructionTester { public: ConstructionTester() : self_ptr_(this), value_(0) { constructions++; } ~ConstructionTester() { assert(self_ptr_ == this); self_ptr_ = nullptr; destructions++; } // These are incremented as elements are constructed and destructed so we can // be sure all elements are properly cleaned up. static int constructions; static int destructions; void CheckConstructed() { assert(self_ptr_ == this); } void set(int value) { value_ = value; } int get() { return value_; } private: // self_ptr_ should always point to 'this' -- that's how we can be sure the // constructor has been called. ConstructionTester* self_ptr_; int value_; }; int ConstructionTester::constructions = 0; int ConstructionTester::destructions = 0; // ThreeInts will initialize its three ints to the value stored in // ThreeInts::counter. The constructor increments counter so that each object // in an array of ThreeInts will have different values. class ThreeInts { public: ThreeInts() { x_ = counter; y_ = counter; z_ = counter; ++counter; } static int counter; int x_, y_, z_; }; int ThreeInts::counter = 0; TEST(FixedArrayTest, CopyCtor) { absl::FixedArray<int, 10> on_stack(5); std::iota(on_stack.begin(), on_stack.end(), 0); absl::FixedArray<int, 10> stack_copy = on_stack; EXPECT_THAT(stack_copy, ElementsAreArray(on_stack)); EXPECT_TRUE(IsOnStack(stack_copy)); absl::FixedArray<int, 10> allocated(15); std::iota(allocated.begin(), allocated.end(), 0); absl::FixedArray<int, 10> alloced_copy = allocated; EXPECT_THAT(alloced_copy, ElementsAreArray(allocated)); EXPECT_FALSE(IsOnStack(alloced_copy)); } TEST(FixedArrayTest, MoveCtor) { absl::FixedArray<std::unique_ptr<int>, 10> on_stack(5); for (int i = 0; i < 5; ++i) { on_stack[i] = absl::make_unique<int>(i); } absl::FixedArray<std::unique_ptr<int>, 10> stack_copy = std::move(on_stack); for (int i = 0; i < 5; ++i) EXPECT_EQ(*(stack_copy[i]), i); EXPECT_EQ(stack_copy.size(), on_stack.size()); absl::FixedArray<std::unique_ptr<int>, 10> allocated(15); for (int i = 0; i < 15; ++i) { allocated[i] = absl::make_unique<int>(i); } absl::FixedArray<std::unique_ptr<int>, 10> alloced_copy = std::move(allocated); for (int i = 0; i < 15; ++i) EXPECT_EQ(*(alloced_copy[i]), i); EXPECT_EQ(allocated.size(), alloced_copy.size()); } TEST(FixedArrayTest, SmallObjects) { // Small object arrays { // Short arrays should be on the stack absl::FixedArray<int> array(4); EXPECT_TRUE(IsOnStack(array)); } { // Large arrays should be on the heap absl::FixedArray<int> array(1048576); EXPECT_FALSE(IsOnStack(array)); } { // Arrays of <= default size should be on the stack absl::FixedArray<int, 100> array(100); EXPECT_TRUE(IsOnStack(array)); } { // Arrays of > default size should be on the heap absl::FixedArray<int, 100> array(101); EXPECT_FALSE(IsOnStack(array)); } { // Arrays with different size elements should use approximately // same amount of stack space absl::FixedArray<int> array1(0); absl::FixedArray<char> array2(0); EXPECT_LE(sizeof(array1), sizeof(array2) + 100); EXPECT_LE(sizeof(array2), sizeof(array1) + 100); } { // Ensure that vectors are properly constructed inside a fixed array. absl::FixedArray<std::vector<int>> array(2); EXPECT_EQ(0, array[0].size()); EXPECT_EQ(0, array[1].size()); } { // Regardless of absl::FixedArray implementation, check that a type with a // low alignment requirement and a non power-of-two size is initialized // correctly. ThreeInts::counter = 1; absl::FixedArray<ThreeInts> array(2); EXPECT_EQ(1, array[0].x_); EXPECT_EQ(1, array[0].y_); EXPECT_EQ(1, array[0].z_); EXPECT_EQ(2, array[1].x_); EXPECT_EQ(2, array[1].y_); EXPECT_EQ(2, array[1].z_); } } TEST(FixedArrayTest, AtThrows) { absl::FixedArray<int> a = {1, 2, 3}; EXPECT_EQ(a.at(2), 3); ABSL_BASE_INTERNAL_EXPECT_FAIL(a.at(3), std::out_of_range, "failed bounds check"); } TEST(FixedArrayRelationalsTest, EqualArrays) { for (int i = 0; i < 10; ++i) { absl::FixedArray<int, 5> a1(i); std::iota(a1.begin(), a1.end(), 0); absl::FixedArray<int, 5> a2(a1.begin(), a1.end()); EXPECT_TRUE(a1 == a2); EXPECT_FALSE(a1 != a2); EXPECT_TRUE(a2 == a1); EXPECT_FALSE(a2 != a1); EXPECT_FALSE(a1 < a2); EXPECT_FALSE(a1 > a2); EXPECT_FALSE(a2 < a1); EXPECT_FALSE(a2 > a1); EXPECT_TRUE(a1 <= a2); EXPECT_TRUE(a1 >= a2); EXPECT_TRUE(a2 <= a1); EXPECT_TRUE(a2 >= a1); } } TEST(FixedArrayRelationalsTest, UnequalArrays) { for (int i = 1; i < 10; ++i) { absl::FixedArray<int, 5> a1(i); std::iota(a1.begin(), a1.end(), 0); absl::FixedArray<int, 5> a2(a1.begin(), a1.end()); --a2[i / 2]; EXPECT_FALSE(a1 == a2); EXPECT_TRUE(a1 != a2); EXPECT_FALSE(a2 == a1); EXPECT_TRUE(a2 != a1); EXPECT_FALSE(a1 < a2); EXPECT_TRUE(a1 > a2); EXPECT_TRUE(a2 < a1); EXPECT_FALSE(a2 > a1); EXPECT_FALSE(a1 <= a2); EXPECT_TRUE(a1 >= a2); EXPECT_TRUE(a2 <= a1); EXPECT_FALSE(a2 >= a1); } } template <int stack_elements> static void TestArray(int n) { SCOPED_TRACE(n); SCOPED_TRACE(stack_elements); ConstructionTester::constructions = 0; ConstructionTester::destructions = 0; { absl::FixedArray<ConstructionTester, stack_elements> array(n); EXPECT_THAT(array.size(), n); EXPECT_THAT(array.memsize(), sizeof(ConstructionTester) * n); EXPECT_THAT(array.begin() + n, array.end()); // Check that all elements were constructed for (int i = 0; i < n; i++) { array[i].CheckConstructed(); } // Check that no other elements were constructed EXPECT_THAT(ConstructionTester::constructions, n); // Test operator[] for (int i = 0; i < n; i++) { array[i].set(i); } for (int i = 0; i < n; i++) { EXPECT_THAT(array[i].get(), i); EXPECT_THAT(array.data()[i].get(), i); } // Test data() for (int i = 0; i < n; i++) { array.data()[i].set(i + 1); } for (int i = 0; i < n; i++) { EXPECT_THAT(array[i].get(), i + 1); EXPECT_THAT(array.data()[i].get(), i + 1); } } // Close scope containing 'array'. // Check that all constructed elements were destructed. EXPECT_EQ(ConstructionTester::constructions, ConstructionTester::destructions); } template <int elements_per_inner_array, int inline_elements> static void TestArrayOfArrays(int n) { SCOPED_TRACE(n); SCOPED_TRACE(inline_elements); SCOPED_TRACE(elements_per_inner_array); ConstructionTester::constructions = 0; ConstructionTester::destructions = 0; { using InnerArray = ConstructionTester[elements_per_inner_array]; // Heap-allocate the FixedArray to avoid blowing the stack frame. auto array_ptr = absl::make_unique<absl::FixedArray<InnerArray, inline_elements>>(n); auto& array = *array_ptr; ASSERT_EQ(array.size(), n); ASSERT_EQ(array.memsize(), sizeof(ConstructionTester) * elements_per_inner_array * n); ASSERT_EQ(array.begin() + n, array.end()); // Check that all elements were constructed for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { (array[i])[j].CheckConstructed(); } } // Check that no other elements were constructed ASSERT_EQ(ConstructionTester::constructions, n * elements_per_inner_array); // Test operator[] for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { (array[i])[j].set(i * elements_per_inner_array + j); } } for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { ASSERT_EQ((array[i])[j].get(), i * elements_per_inner_array + j); ASSERT_EQ((array.data()[i])[j].get(), i * elements_per_inner_array + j); } } // Test data() for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { (array.data()[i])[j].set((i + 1) * elements_per_inner_array + j); } } for (int i = 0; i < n; i++) { for (int j = 0; j < elements_per_inner_array; j++) { ASSERT_EQ((array[i])[j].get(), (i + 1) * elements_per_inner_array + j); ASSERT_EQ((array.data()[i])[j].get(), (i + 1) * elements_per_inner_array + j); } } } // Close scope containing 'array'. // Check that all constructed elements were destructed. EXPECT_EQ(ConstructionTester::constructions, ConstructionTester::destructions); } TEST(IteratorConstructorTest, NonInline) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; absl::FixedArray<int, ABSL_ARRAYSIZE(kInput) - 1> const fixed( kInput, kInput + ABSL_ARRAYSIZE(kInput)); ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { ASSERT_EQ(kInput[i], fixed[i]); } } TEST(IteratorConstructorTest, Inline) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; absl::FixedArray<int, ABSL_ARRAYSIZE(kInput)> const fixed( kInput, kInput + ABSL_ARRAYSIZE(kInput)); ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { ASSERT_EQ(kInput[i], fixed[i]); } } TEST(IteratorConstructorTest, NonPod) { char const* kInput[] = {"red", "orange", "yellow", "green", "blue", "indigo", "violet"}; absl::FixedArray<std::string> const fixed(kInput, kInput + ABSL_ARRAYSIZE(kInput)); ASSERT_EQ(ABSL_ARRAYSIZE(kInput), fixed.size()); for (size_t i = 0; i < ABSL_ARRAYSIZE(kInput); ++i) { ASSERT_EQ(kInput[i], fixed[i]); } } TEST(IteratorConstructorTest, FromEmptyVector) { std::vector<int> const empty; absl::FixedArray<int> const fixed(empty.begin(), empty.end()); EXPECT_EQ(0, fixed.size()); EXPECT_EQ(empty.size(), fixed.size()); } TEST(IteratorConstructorTest, FromNonEmptyVector) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; std::vector<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput)); absl::FixedArray<int> const fixed(items.begin(), items.end()); ASSERT_EQ(items.size(), fixed.size()); for (size_t i = 0; i < items.size(); ++i) { ASSERT_EQ(items[i], fixed[i]); } } TEST(IteratorConstructorTest, FromBidirectionalIteratorRange) { int const kInput[] = {2, 3, 5, 7, 11, 13, 17}; std::list<int> const items(kInput, kInput + ABSL_ARRAYSIZE(kInput)); absl::FixedArray<int> const fixed(items.begin(), items.end()); EXPECT_THAT(fixed, testing::ElementsAreArray(kInput)); } TEST(InitListConstructorTest, InitListConstruction) { absl::FixedArray<int> fixed = {1, 2, 3}; EXPECT_THAT(fixed, testing::ElementsAreArray({1, 2, 3})); } TEST(FillConstructorTest, NonEmptyArrays) { absl::FixedArray<int> stack_array(4, 1); EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1})); absl::FixedArray<int, 0> heap_array(4, 1); EXPECT_THAT(stack_array, testing::ElementsAreArray({1, 1, 1, 1})); } TEST(FillConstructorTest, EmptyArray) { absl::FixedArray<int> empty_fill(0, 1); absl::FixedArray<int> empty_size(0); EXPECT_EQ(empty_fill, empty_size); } TEST(FillConstructorTest, NotTriviallyCopyable) { std::string str = "abcd"; absl::FixedArray<std::string> strings = {str, str, str, str}; absl::FixedArray<std::string> array(4, str); EXPECT_EQ(array, strings); } TEST(FillConstructorTest, Disambiguation) { absl::FixedArray<size_t> a(1, 2); EXPECT_THAT(a, testing::ElementsAre(2)); } TEST(FixedArrayTest, ManySizedArrays) { std::vector<int> sizes; for (int i = 1; i < 100; i++) sizes.push_back(i); for (int i = 100; i <= 1000; i += 100) sizes.push_back(i); for (int n : sizes) { TestArray<0>(n); TestArray<1>(n); TestArray<64>(n); TestArray<1000>(n); } } TEST(FixedArrayTest, ManySizedArraysOfArraysOf1) { for (int n = 1; n < 1000; n++) { ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 0>(n))); ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1>(n))); ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 64>(n))); ASSERT_NO_FATAL_FAILURE((TestArrayOfArrays<1, 1000>(n))); } } TEST(FixedArrayTest, ManySizedArraysOfArraysOf2) { for (int n = 1; n < 1000; n++) { TestArrayOfArrays<2, 0>(n); TestArrayOfArrays<2, 1>(n); TestArrayOfArrays<2, 64>(n); TestArrayOfArrays<2, 1000>(n); } } // If value_type is put inside of a struct container, // we might evoke this error in a hardened build unless data() is carefully // written, so check on that. // error: call to int __builtin___sprintf_chk(etc...) // will always overflow destination buffer [-Werror] TEST(FixedArrayTest, AvoidParanoidDiagnostics) { absl::FixedArray<char, 32> buf(32); sprintf(buf.data(), "foo"); // NOLINT(runtime/printf) } TEST(FixedArrayTest, TooBigInlinedSpace) { struct TooBig { char c[1 << 20]; }; // too big for even one on the stack // Simulate the data members of absl::FixedArray, a pointer and a size_t. struct Data { TooBig* p; size_t size; }; // Make sure TooBig objects are not inlined for 0 or default size. static_assert(sizeof(absl::FixedArray<TooBig, 0>) == sizeof(Data), "0-sized absl::FixedArray should have same size as Data."); static_assert(alignof(absl::FixedArray<TooBig, 0>) == alignof(Data), "0-sized absl::FixedArray should have same alignment as Data."); static_assert(sizeof(absl::FixedArray<TooBig>) == sizeof(Data), "default-sized absl::FixedArray should have same size as Data"); static_assert( alignof(absl::FixedArray<TooBig>) == alignof(Data), "default-sized absl::FixedArray should have same alignment as Data."); } // PickyDelete EXPECTs its class-scope deallocation funcs are unused. struct PickyDelete { PickyDelete() {} ~PickyDelete() {} void operator delete(void* p) { EXPECT_TRUE(false) << __FUNCTION__; ::operator delete(p); } void operator delete[](void* p) { EXPECT_TRUE(false) << __FUNCTION__; ::operator delete[](p); } }; TEST(FixedArrayTest, UsesGlobalAlloc) { absl::FixedArray<PickyDelete, 0> a(5); } TEST(FixedArrayTest, Data) { static const int kInput[] = {2, 3, 5, 7, 11, 13, 17}; absl::FixedArray<int> fa(std::begin(kInput), std::end(kInput)); EXPECT_EQ(fa.data(), &*fa.begin()); EXPECT_EQ(fa.data(), &fa[0]); const absl::FixedArray<int>& cfa = fa; EXPECT_EQ(cfa.data(), &*cfa.begin()); EXPECT_EQ(cfa.data(), &cfa[0]); } TEST(FixedArrayTest, Empty) { absl::FixedArray<int> empty(0); absl::FixedArray<int> inline_filled(1); absl::FixedArray<int, 0> heap_filled(1); EXPECT_TRUE(empty.empty()); EXPECT_FALSE(inline_filled.empty()); EXPECT_FALSE(heap_filled.empty()); } TEST(FixedArrayTest, FrontAndBack) { absl::FixedArray<int, 3 * sizeof(int)> inlined = {1, 2, 3}; EXPECT_EQ(inlined.front(), 1); EXPECT_EQ(inlined.back(), 3); absl::FixedArray<int, 0> allocated = {1, 2, 3}; EXPECT_EQ(allocated.front(), 1); EXPECT_EQ(allocated.back(), 3); absl::FixedArray<int> one_element = {1}; EXPECT_EQ(one_element.front(), one_element.back()); } TEST(FixedArrayTest, ReverseIteratorInlined) { absl::FixedArray<int, 5 * sizeof(int)> a = {0, 1, 2, 3, 4}; int counter = 5; for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (auto iter = a.crbegin(); iter != a.crend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); } TEST(FixedArrayTest, ReverseIteratorAllocated) { absl::FixedArray<int, 0> a = {0, 1, 2, 3, 4}; int counter = 5; for (absl::FixedArray<int>::reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (absl::FixedArray<int>::const_reverse_iterator iter = a.rbegin(); iter != a.rend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); counter = 5; for (auto iter = a.crbegin(); iter != a.crend(); ++iter) { counter--; EXPECT_EQ(counter, *iter); } EXPECT_EQ(counter, 0); } TEST(FixedArrayTest, Fill) { absl::FixedArray<int, 5 * sizeof(int)> inlined(5); int fill_val = 42; inlined.fill(fill_val); for (int i : inlined) EXPECT_EQ(i, fill_val); absl::FixedArray<int, 0> allocated(5); allocated.fill(fill_val); for (int i : allocated) EXPECT_EQ(i, fill_val); // It doesn't do anything, just make sure this compiles. absl::FixedArray<int> empty(0); empty.fill(fill_val); } #ifndef __GNUC__ TEST(FixedArrayTest, DefaultCtorDoesNotValueInit) { using T = char; constexpr auto capacity = 10; using FixedArrType = absl::FixedArray<T, capacity>; constexpr auto scrubbed_bits = 0x95; constexpr auto length = capacity / 2; alignas(FixedArrType) unsigned char buff[sizeof(FixedArrType)]; std::memset(std::addressof(buff), scrubbed_bits, sizeof(FixedArrType)); FixedArrType* arr = ::new (static_cast<void*>(std::addressof(buff))) FixedArrType(length); EXPECT_THAT(*arr, testing::Each(scrubbed_bits)); arr->~FixedArrType(); } #endif // __GNUC__ // This is a stateful allocator, but the state lives outside of the // allocator (in whatever test is using the allocator). This is odd // but helps in tests where the allocator is propagated into nested // containers - that chain of allocators uses the same state and is // thus easier to query for aggregate allocation information. template <typename T> class CountingAllocator : public std::allocator<T> { public: using Alloc = std::allocator<T>; using pointer = typename Alloc::pointer; using size_type = typename Alloc::size_type; CountingAllocator() : bytes_used_(nullptr), instance_count_(nullptr) {} explicit CountingAllocator(int64_t* b) : bytes_used_(b), instance_count_(nullptr) {} CountingAllocator(int64_t* b, int64_t* a) : bytes_used_(b), instance_count_(a) {} template <typename U> explicit CountingAllocator(const CountingAllocator<U>& x) : Alloc(x), bytes_used_(x.bytes_used_), instance_count_(x.instance_count_) {} pointer allocate(size_type n, const void* const hint = nullptr) { assert(bytes_used_ != nullptr); *bytes_used_ += n * sizeof(T); return Alloc::allocate(n, hint); } void deallocate(pointer p, size_type n) { Alloc::deallocate(p, n); assert(bytes_used_ != nullptr); *bytes_used_ -= n * sizeof(T); } template <typename... Args> void construct(pointer p, Args&&... args) { Alloc::construct(p, absl::forward<Args>(args)...); if (instance_count_) { *instance_count_ += 1; } } void destroy(pointer p) { Alloc::destroy(p); if (instance_count_) { *instance_count_ -= 1; } } template <typename U> class rebind { public: using other = CountingAllocator<U>; }; int64_t* bytes_used_; int64_t* instance_count_; }; TEST(AllocatorSupportTest, CountInlineAllocations) { constexpr size_t inlined_size = 4; using Alloc = CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated = 0; int64_t active_instances = 0; { const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; Alloc alloc(&allocated, &active_instances); AllocFxdArr arr(ia, ia + inlined_size, alloc); static_cast<void>(arr); } EXPECT_EQ(allocated, 0); EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, CountOutoflineAllocations) { constexpr size_t inlined_size = 4; using Alloc = CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated = 0; int64_t active_instances = 0; { const int ia[] = {0, 1, 2, 3, 4, 5, 6, 7}; Alloc alloc(&allocated, &active_instances); AllocFxdArr arr(ia, ia + ABSL_ARRAYSIZE(ia), alloc); EXPECT_EQ(allocated, arr.size() * sizeof(int)); static_cast<void>(arr); } EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, CountCopyInlineAllocations) { constexpr size_t inlined_size = 4; using Alloc = CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated1 = 0; int64_t allocated2 = 0; int64_t active_instances = 0; Alloc alloc(&allocated1, &active_instances); Alloc alloc2(&allocated2, &active_instances); { int initial_value = 1; AllocFxdArr arr1(inlined_size / 2, initial_value, alloc); EXPECT_EQ(allocated1, 0); AllocFxdArr arr2(arr1, alloc2); EXPECT_EQ(allocated2, 0); static_cast<void>(arr1); static_cast<void>(arr2); } EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, CountCopyOutoflineAllocations) { constexpr size_t inlined_size = 4; using Alloc = CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; int64_t allocated1 = 0; int64_t allocated2 = 0; int64_t active_instances = 0; Alloc alloc(&allocated1, &active_instances); Alloc alloc2(&allocated2, &active_instances); { int initial_value = 1; AllocFxdArr arr1(inlined_size * 2, initial_value, alloc); EXPECT_EQ(allocated1, arr1.size() * sizeof(int)); AllocFxdArr arr2(arr1, alloc2); EXPECT_EQ(allocated2, inlined_size * 2 * sizeof(int)); static_cast<void>(arr1); static_cast<void>(arr2); } EXPECT_EQ(active_instances, 0); } TEST(AllocatorSupportTest, SizeValAllocConstructor) { using testing::AllOf; using testing::Each; using testing::SizeIs; constexpr size_t inlined_size = 4; using Alloc = CountingAllocator<int>; using AllocFxdArr = absl::FixedArray<int, inlined_size, Alloc>; { auto len = inlined_size / 2; auto val = 0; int64_t allocated = 0; AllocFxdArr arr(len, val, Alloc(&allocated)); EXPECT_EQ(allocated, 0); EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0))); } { auto len = inlined_size * 2; auto val = 0; int64_t allocated = 0; AllocFxdArr arr(len, val, Alloc(&allocated)); EXPECT_EQ(allocated, len * sizeof(int)); EXPECT_THAT(arr, AllOf(SizeIs(len), Each(0))); } } #ifdef ADDRESS_SANITIZER TEST(FixedArrayTest, AddressSanitizerAnnotations1) { absl::FixedArray<int, 32> a(10); int* raw = a.data(); raw[0] = 0; raw[9] = 0; EXPECT_DEATH(raw[-2] = 0, "container-overflow"); EXPECT_DEATH(raw[-1] = 0, "container-overflow"); EXPECT_DEATH(raw[10] = 0, "container-overflow"); EXPECT_DEATH(raw[31] = 0, "container-overflow"); } TEST(FixedArrayTest, AddressSanitizerAnnotations2) { absl::FixedArray<char, 17> a(12); char* raw = a.data(); raw[0] = 0; raw[11] = 0; EXPECT_DEATH(raw[-7] = 0, "container-overflow"); EXPECT_DEATH(raw[-1] = 0, "container-overflow"); EXPECT_DEATH(raw[12] = 0, "container-overflow"); EXPECT_DEATH(raw[17] = 0, "container-overflow"); } TEST(FixedArrayTest, AddressSanitizerAnnotations3) { absl::FixedArray<uint64_t, 20> a(20); uint64_t* raw = a.data(); raw[0] = 0; raw[19] = 0; EXPECT_DEATH(raw[-1] = 0, "container-overflow"); EXPECT_DEATH(raw[20] = 0, "container-overflow"); } TEST(FixedArrayTest, AddressSanitizerAnnotations4) { absl::FixedArray<ThreeInts> a(10); ThreeInts* raw = a.data(); raw[0] = ThreeInts(); raw[9] = ThreeInts(); // Note: raw[-1] is pointing to 12 bytes before the container range. However, // there is only a 8-byte red zone before the container range, so we only // access the last 4 bytes of the struct to make sure it stays within the red // zone. EXPECT_DEATH(raw[-1].z_ = 0, "container-overflow"); EXPECT_DEATH(raw[10] = ThreeInts(), "container-overflow"); // The actual size of storage is kDefaultBytes=256, 21*12 = 252, // so reading raw[21] should still trigger the correct warning. EXPECT_DEATH(raw[21] = ThreeInts(), "container-overflow"); } #endif // ADDRESS_SANITIZER TEST(FixedArrayTest, AbslHashValueWorks) { using V = absl::FixedArray<int>; std::vector<V> cases; // Generate a variety of vectors some of these are small enough for the inline // space but are stored out of line. for (int i = 0; i < 10; ++i) { V v(i); for (int j = 0; j < i; ++j) { v[j] = j; } cases.push_back(v); } EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(cases)); } } // namespace