// Copyright 2018 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // ----------------------------------------------------------------------------- // File: fixed_array.h // ----------------------------------------------------------------------------- // // A `FixedArray<T>` represents a non-resizable array of `T` where the length of // the array can be determined at run-time. It is a good replacement for // non-standard and deprecated uses of `alloca()` and variable length arrays // within the GCC extension. (See // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). // // `FixedArray` allocates small arrays inline, keeping performance fast by // avoiding heap operations. It also helps reduce the chances of // accidentally overflowing your stack if large input is passed to // your function. #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ #define ABSL_CONTAINER_FIXED_ARRAY_H_ #include <algorithm> #include <array> #include <cassert> #include <cstddef> #include <initializer_list> #include <iterator> #include <limits> #include <memory> #include <new> #include <type_traits> #include "absl/algorithm/algorithm.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/internal/throw_delegate.h" #include "absl/base/macros.h" #include "absl/base/optimization.h" #include "absl/base/port.h" #include "absl/container/internal/compressed_tuple.h" #include "absl/memory/memory.h" namespace absl { constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); // ----------------------------------------------------------------------------- // FixedArray // ----------------------------------------------------------------------------- // // A `FixedArray` provides a run-time fixed-size array, allocating a small array // inline for efficiency. // // Most users should not specify an `inline_elements` argument and let // `FixedArray` automatically determine the number of elements // to store inline based on `sizeof(T)`. If `inline_elements` is specified, the // `FixedArray` implementation will use inline storage for arrays with a // length <= `inline_elements`. // // Note that a `FixedArray` constructed with a `size_type` argument will // default-initialize its values by leaving trivially constructible types // uninitialized (e.g. int, int[4], double), and others default-constructed. // This matches the behavior of c-style arrays and `std::array`, but not // `std::vector`. // // Note that `FixedArray` does not provide a public allocator; if it requires a // heap allocation, it will do so with global `::operator new[]()` and // `::operator delete[]()`, even if T provides class-scope overrides for these // operators. template <typename T, size_t N = kFixedArrayUseDefault, typename A = std::allocator<T>> class FixedArray { static_assert(!std::is_array<T>::value || std::extent<T>::value > 0, "Arrays with unknown bounds cannot be used with FixedArray."); static constexpr size_t kInlineBytesDefault = 256; using AllocatorTraits = std::allocator_traits<A>; // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, // but this seems to be mostly pedantic. template <typename Iterator> using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible< typename std::iterator_traits<Iterator>::iterator_category, std::forward_iterator_tag>::value>; static constexpr bool NoexceptCopyable() { return std::is_nothrow_copy_constructible<StorageElement>::value && absl::allocator_is_nothrow<allocator_type>::value; } static constexpr bool NoexceptMovable() { return std::is_nothrow_move_constructible<StorageElement>::value && absl::allocator_is_nothrow<allocator_type>::value; } static constexpr bool DefaultConstructorIsNonTrivial() { return !absl::is_trivially_default_constructible<StorageElement>::value; } public: using allocator_type = typename AllocatorTraits::allocator_type; using value_type = typename allocator_type::value_type; using pointer = typename allocator_type::pointer; using const_pointer = typename allocator_type::const_pointer; using reference = typename allocator_type::reference; using const_reference = typename allocator_type::const_reference; using size_type = typename allocator_type::size_type; using difference_type = typename allocator_type::difference_type; using iterator = pointer; using const_iterator = const_pointer; using reverse_iterator = std::reverse_iterator<iterator>; using const_reverse_iterator = std::reverse_iterator<const_iterator>; static constexpr size_type inline_elements = (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type) : static_cast<size_type>(N)); FixedArray( const FixedArray& other, const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable()) : FixedArray(other.begin(), other.end(), a) {} FixedArray( FixedArray&& other, const allocator_type& a = allocator_type()) noexcept(NoexceptMovable()) : FixedArray(std::make_move_iterator(other.begin()), std::make_move_iterator(other.end()), a) {} // Creates an array object that can store `n` elements. // Note that trivially constructible elements will be uninitialized. explicit FixedArray(size_type n, const allocator_type& a = allocator_type()) : storage_(n, a) { if (DefaultConstructorIsNonTrivial()) { memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), storage_.end()); } } // Creates an array initialized with `n` copies of `val`. FixedArray(size_type n, const value_type& val, const allocator_type& a = allocator_type()) : storage_(n, a) { memory_internal::ConstructRange(storage_.alloc(), storage_.begin(), storage_.end(), val); } // Creates an array initialized with the size and contents of `init_list`. FixedArray(std::initializer_list<value_type> init_list, const allocator_type& a = allocator_type()) : FixedArray(init_list.begin(), init_list.end(), a) {} // Creates an array initialized with the elements from the input // range. The array's size will always be `std::distance(first, last)`. // REQUIRES: Iterator must be a forward_iterator or better. template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr> FixedArray(Iterator first, Iterator last, const allocator_type& a = allocator_type()) : storage_(std::distance(first, last), a) { memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last); } ~FixedArray() noexcept { for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) { AllocatorTraits::destroy(storage_.alloc(), cur); } } // Assignments are deleted because they break the invariant that the size of a // `FixedArray` never changes. void operator=(FixedArray&&) = delete; void operator=(const FixedArray&) = delete; // FixedArray::size() // // Returns the length of the fixed array. size_type size() const { return storage_.size(); } // FixedArray::max_size() // // Returns the largest possible value of `std::distance(begin(), end())` for a // `FixedArray<T>`. This is equivalent to the most possible addressable bytes // over the number of bytes taken by T. constexpr size_type max_size() const { return std::numeric_limits<difference_type>::max() / sizeof(value_type); } // FixedArray::empty() // // Returns whether or not the fixed array is empty. bool empty() const { return size() == 0; } // FixedArray::memsize() // // Returns the memory size of the fixed array in bytes. size_t memsize() const { return size() * sizeof(value_type); } // FixedArray::data() // // Returns a const T* pointer to elements of the `FixedArray`. This pointer // can be used to access (but not modify) the contained elements. const_pointer data() const { return AsValueType(storage_.begin()); } // Overload of FixedArray::data() to return a T* pointer to elements of the // fixed array. This pointer can be used to access and modify the contained // elements. pointer data() { return AsValueType(storage_.begin()); } // FixedArray::operator[] // // Returns a reference the ith element of the fixed array. // REQUIRES: 0 <= i < size() reference operator[](size_type i) { assert(i < size()); return data()[i]; } // Overload of FixedArray::operator()[] to return a const reference to the // ith element of the fixed array. // REQUIRES: 0 <= i < size() const_reference operator[](size_type i) const { assert(i < size()); return data()[i]; } // FixedArray::at // // Bounds-checked access. Returns a reference to the ith element of the // fiexed array, or throws std::out_of_range reference at(size_type i) { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); } return data()[i]; } // Overload of FixedArray::at() to return a const reference to the ith element // of the fixed array. const_reference at(size_type i) const { if (ABSL_PREDICT_FALSE(i >= size())) { base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); } return data()[i]; } // FixedArray::front() // // Returns a reference to the first element of the fixed array. reference front() { return *begin(); } // Overload of FixedArray::front() to return a reference to the first element // of a fixed array of const values. const_reference front() const { return *begin(); } // FixedArray::back() // // Returns a reference to the last element of the fixed array. reference back() { return *(end() - 1); } // Overload of FixedArray::back() to return a reference to the last element // of a fixed array of const values. const_reference back() const { return *(end() - 1); } // FixedArray::begin() // // Returns an iterator to the beginning of the fixed array. iterator begin() { return data(); } // Overload of FixedArray::begin() to return a const iterator to the // beginning of the fixed array. const_iterator begin() const { return data(); } // FixedArray::cbegin() // // Returns a const iterator to the beginning of the fixed array. const_iterator cbegin() const { return begin(); } // FixedArray::end() // // Returns an iterator to the end of the fixed array. iterator end() { return data() + size(); } // Overload of FixedArray::end() to return a const iterator to the end of the // fixed array. const_iterator end() const { return data() + size(); } // FixedArray::cend() // // Returns a const iterator to the end of the fixed array. const_iterator cend() const { return end(); } // FixedArray::rbegin() // // Returns a reverse iterator from the end of the fixed array. reverse_iterator rbegin() { return reverse_iterator(end()); } // Overload of FixedArray::rbegin() to return a const reverse iterator from // the end of the fixed array. const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); } // FixedArray::crbegin() // // Returns a const reverse iterator from the end of the fixed array. const_reverse_iterator crbegin() const { return rbegin(); } // FixedArray::rend() // // Returns a reverse iterator from the beginning of the fixed array. reverse_iterator rend() { return reverse_iterator(begin()); } // Overload of FixedArray::rend() for returning a const reverse iterator // from the beginning of the fixed array. const_reverse_iterator rend() const { return const_reverse_iterator(begin()); } // FixedArray::crend() // // Returns a reverse iterator from the beginning of the fixed array. const_reverse_iterator crend() const { return rend(); } // FixedArray::fill() // // Assigns the given `value` to all elements in the fixed array. void fill(const value_type& val) { std::fill(begin(), end(), val); } // Relational operators. Equality operators are elementwise using // `operator==`, while order operators order FixedArrays lexicographically. friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { return !(lhs == rhs); } friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); } friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { return rhs < lhs; } friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { return !(rhs < lhs); } friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { return !(lhs < rhs); } private: // StorageElement // // For FixedArrays with a C-style-array value_type, StorageElement is a POD // wrapper struct called StorageElementWrapper that holds the value_type // instance inside. This is needed for construction and destruction of the // entire array regardless of how many dimensions it has. For all other cases, // StorageElement is just an alias of value_type. // // Maintainer's Note: The simpler solution would be to simply wrap value_type // in a struct whether it's an array or not. That causes some paranoid // diagnostics to misfire, believing that 'data()' returns a pointer to a // single element, rather than the packed array that it really is. // e.g.: // // FixedArray<char> buf(1); // sprintf(buf.data(), "foo"); // // error: call to int __builtin___sprintf_chk(etc...) // will always overflow destination buffer [-Werror] // template <typename OuterT = value_type, typename InnerT = absl::remove_extent_t<OuterT>, size_t InnerN = std::extent<OuterT>::value> struct StorageElementWrapper { InnerT array[InnerN]; }; using StorageElement = absl::conditional_t<std::is_array<value_type>::value, StorageElementWrapper<value_type>, value_type>; using StorageElementBuffer = absl::aligned_storage_t<sizeof(StorageElement), alignof(StorageElement)>; static pointer AsValueType(pointer ptr) { return ptr; } static pointer AsValueType(StorageElementWrapper<value_type>* ptr) { return std::addressof(ptr->array); } static_assert(sizeof(StorageElement) == sizeof(value_type), ""); static_assert(alignof(StorageElement) == alignof(value_type), ""); struct NonEmptyInlinedStorage { StorageElement* data() { return reinterpret_cast<StorageElement*>(inlined_storage_.data()); } #ifdef ADDRESS_SANITIZER void* RedzoneBegin() { return &redzone_begin_; } void* RedzoneEnd() { return &redzone_end_ + 1; } #endif // ADDRESS_SANITIZER void AnnotateConstruct(size_type); void AnnotateDestruct(size_type); ADDRESS_SANITIZER_REDZONE(redzone_begin_); std::array<StorageElementBuffer, inline_elements> inlined_storage_; ADDRESS_SANITIZER_REDZONE(redzone_end_); }; struct EmptyInlinedStorage { StorageElement* data() { return nullptr; } void AnnotateConstruct(size_type) {} void AnnotateDestruct(size_type) {} }; using InlinedStorage = absl::conditional_t<inline_elements == 0, EmptyInlinedStorage, NonEmptyInlinedStorage>; // Storage // // An instance of Storage manages the inline and out-of-line memory for // instances of FixedArray. This guarantees that even when construction of // individual elements fails in the FixedArray constructor body, the // destructor for Storage will still be called and out-of-line memory will be // properly deallocated. // class Storage : public InlinedStorage { public: Storage(size_type n, const allocator_type& a) : size_alloc_(n, a), data_(InitializeData()) {} ~Storage() noexcept { if (UsingInlinedStorage(size())) { InlinedStorage::AnnotateDestruct(size()); } else { AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size()); } } size_type size() const { return size_alloc_.template get<0>(); } StorageElement* begin() const { return data_; } StorageElement* end() const { return begin() + size(); } allocator_type& alloc() { return size_alloc_.template get<1>(); } private: static bool UsingInlinedStorage(size_type n) { return n <= inline_elements; } StorageElement* InitializeData() { if (UsingInlinedStorage(size())) { InlinedStorage::AnnotateConstruct(size()); return InlinedStorage::data(); } else { return reinterpret_cast<StorageElement*>( AllocatorTraits::allocate(alloc(), size())); } } // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s container_internal::CompressedTuple<size_type, allocator_type> size_alloc_; StorageElement* data_; }; Storage storage_; }; template <typename T, size_t N, typename A> constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault; template <typename T, size_t N, typename A> constexpr typename FixedArray<T, N, A>::size_type FixedArray<T, N, A>::inline_elements; template <typename T, size_t N, typename A> void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct( typename FixedArray<T, N, A>::size_type n) { #ifdef ADDRESS_SANITIZER if (!n) return; ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(), data() + n); ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(), RedzoneBegin()); #endif // ADDRESS_SANITIZER static_cast<void>(n); // Mark used when not in asan mode } template <typename T, size_t N, typename A> void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct( typename FixedArray<T, N, A>::size_type n) { #ifdef ADDRESS_SANITIZER if (!n) return; ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n, RedzoneEnd()); ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(), data()); #endif // ADDRESS_SANITIZER static_cast<void>(n); // Mark used when not in asan mode } } // namespace absl #endif // ABSL_CONTAINER_FIXED_ARRAY_H_