// // Copyright 2017 The Abseil Authors. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Most users requiring mutual exclusion should use Mutex. // SpinLock is provided for use in three situations: // - for use in code that Mutex itself depends on // - to get a faster fast-path release under low contention (without an // atomic read-modify-write) In return, SpinLock has worse behaviour under // contention, which is why Mutex is preferred in most situations. // - for async signal safety (see below) // SpinLock is async signal safe. If a spinlock is used within a signal // handler, all code that acquires the lock must ensure that the signal cannot // arrive while they are holding the lock. Typically, this is done by blocking // the signal. #ifndef ABSL_BASE_INTERNAL_SPINLOCK_H_ #define ABSL_BASE_INTERNAL_SPINLOCK_H_ #include <stdint.h> #include <sys/types.h> #include <atomic> #include "absl/base/attributes.h" #include "absl/base/dynamic_annotations.h" #include "absl/base/internal/low_level_scheduling.h" #include "absl/base/internal/raw_logging.h" #include "absl/base/internal/scheduling_mode.h" #include "absl/base/internal/tsan_mutex_interface.h" #include "absl/base/macros.h" #include "absl/base/port.h" #include "absl/base/thread_annotations.h" namespace absl { namespace base_internal { class LOCKABLE SpinLock { public: SpinLock() : lockword_(kSpinLockCooperative) { ABSL_TSAN_MUTEX_CREATE(this, 0); } // Special constructor for use with static SpinLock objects. E.g., // // static SpinLock lock(base_internal::kLinkerInitialized); // // When intialized using this constructor, we depend on the fact // that the linker has already initialized the memory appropriately. // A SpinLock constructed like this can be freely used from global // initializers without worrying about the order in which global // initializers run. explicit SpinLock(base_internal::LinkerInitialized) { // Does nothing; lockword_ is already initialized ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_linker_init); } // Constructors that allow non-cooperative spinlocks to be created for use // inside thread schedulers. Normal clients should not use these. explicit SpinLock(base_internal::SchedulingMode mode); SpinLock(base_internal::LinkerInitialized, base_internal::SchedulingMode mode); ~SpinLock() { ABSL_TSAN_MUTEX_DESTROY(this, 0); } // Acquire this SpinLock. inline void Lock() EXCLUSIVE_LOCK_FUNCTION() { ABSL_TSAN_MUTEX_PRE_LOCK(this, 0); if (!TryLockImpl()) { SlowLock(); } ABSL_TSAN_MUTEX_POST_LOCK(this, 0, 0); } // Try to acquire this SpinLock without blocking and return true if the // acquisition was successful. If the lock was not acquired, false is // returned. If this SpinLock is free at the time of the call, TryLock // will return true with high probability. inline bool TryLock() EXCLUSIVE_TRYLOCK_FUNCTION(true) { ABSL_TSAN_MUTEX_PRE_LOCK(this, __tsan_mutex_try_lock); bool res = TryLockImpl(); ABSL_TSAN_MUTEX_POST_LOCK( this, __tsan_mutex_try_lock | (res ? 0 : __tsan_mutex_try_lock_failed), 0); return res; } // Release this SpinLock, which must be held by the calling thread. inline void Unlock() UNLOCK_FUNCTION() { ABSL_TSAN_MUTEX_PRE_UNLOCK(this, 0); uint32_t lock_value = lockword_.load(std::memory_order_relaxed); lockword_.store(lock_value & kSpinLockCooperative, std::memory_order_release); if ((lock_value & kSpinLockDisabledScheduling) != 0) { base_internal::SchedulingGuard::EnableRescheduling(true); } if ((lock_value & kWaitTimeMask) != 0) { // Collect contentionz profile info, and speed the wakeup of any waiter. // The wait_cycles value indicates how long this thread spent waiting // for the lock. SlowUnlock(lock_value); } ABSL_TSAN_MUTEX_POST_UNLOCK(this, 0); } // Determine if the lock is held. When the lock is held by the invoking // thread, true will always be returned. Intended to be used as // CHECK(lock.IsHeld()). inline bool IsHeld() const { return (lockword_.load(std::memory_order_relaxed) & kSpinLockHeld) != 0; } protected: // These should not be exported except for testing. // Store number of cycles between wait_start_time and wait_end_time in a // lock value. static uint32_t EncodeWaitCycles(int64_t wait_start_time, int64_t wait_end_time); // Extract number of wait cycles in a lock value. static uint64_t DecodeWaitCycles(uint32_t lock_value); // Provide access to protected method above. Use for testing only. friend struct SpinLockTest; private: // lockword_ is used to store the following: // // bit[0] encodes whether a lock is being held. // bit[1] encodes whether a lock uses cooperative scheduling. // bit[2] encodes whether a lock disables scheduling. // bit[3:31] encodes time a lock spent on waiting as a 29-bit unsigned int. enum { kSpinLockHeld = 1 }; enum { kSpinLockCooperative = 2 }; enum { kSpinLockDisabledScheduling = 4 }; enum { kSpinLockSleeper = 8 }; enum { kWaitTimeMask = // Includes kSpinLockSleeper. ~(kSpinLockHeld | kSpinLockCooperative | kSpinLockDisabledScheduling) }; uint32_t TryLockInternal(uint32_t lock_value, uint32_t wait_cycles); void InitLinkerInitializedAndCooperative(); void SlowLock() ABSL_ATTRIBUTE_COLD; void SlowUnlock(uint32_t lock_value) ABSL_ATTRIBUTE_COLD; uint32_t SpinLoop(int64_t initial_wait_timestamp, uint32_t* wait_cycles); inline bool TryLockImpl() { uint32_t lock_value = lockword_.load(std::memory_order_relaxed); return (TryLockInternal(lock_value, 0) & kSpinLockHeld) == 0; } std::atomic<uint32_t> lockword_; SpinLock(const SpinLock&) = delete; SpinLock& operator=(const SpinLock&) = delete; }; // Corresponding locker object that arranges to acquire a spinlock for // the duration of a C++ scope. class SCOPED_LOCKABLE SpinLockHolder { public: inline explicit SpinLockHolder(SpinLock* l) EXCLUSIVE_LOCK_FUNCTION(l) : lock_(l) { l->Lock(); } inline ~SpinLockHolder() UNLOCK_FUNCTION() { lock_->Unlock(); } SpinLockHolder(const SpinLockHolder&) = delete; SpinLockHolder& operator=(const SpinLockHolder&) = delete; private: SpinLock* lock_; }; // Register a hook for profiling support. // // The function pointer registered here will be called whenever a spinlock is // contended. The callback is given an opaque handle to the contended spinlock // and the number of wait cycles. This is thread-safe, but only a single // profiler can be registered. It is an error to call this function multiple // times with different arguments. void RegisterSpinLockProfiler(void (*fn)(const void* lock, int64_t wait_cycles)); //------------------------------------------------------------------------------ // Public interface ends here. //------------------------------------------------------------------------------ // If (result & kSpinLockHeld) == 0, then *this was successfully locked. // Otherwise, returns last observed value for lockword_. inline uint32_t SpinLock::TryLockInternal(uint32_t lock_value, uint32_t wait_cycles) { if ((lock_value & kSpinLockHeld) != 0) { return lock_value; } uint32_t sched_disabled_bit = 0; if ((lock_value & kSpinLockCooperative) == 0) { // For non-cooperative locks we must make sure we mark ourselves as // non-reschedulable before we attempt to CompareAndSwap. if (base_internal::SchedulingGuard::DisableRescheduling()) { sched_disabled_bit = kSpinLockDisabledScheduling; } } if (lockword_.compare_exchange_strong( lock_value, kSpinLockHeld | lock_value | wait_cycles | sched_disabled_bit, std::memory_order_acquire, std::memory_order_relaxed)) { } else { base_internal::SchedulingGuard::EnableRescheduling(sched_disabled_bit); } return lock_value; } } // namespace base_internal } // namespace absl #endif // ABSL_BASE_INTERNAL_SPINLOCK_H_