From 128875b501bc2989617ae553317b80faa556d752 Mon Sep 17 00:00:00 2001 From: Vincent Ambo Date: Thu, 15 Aug 2019 16:11:30 +0100 Subject: chore: Remove remaining Bazel-related files --- .../transformers/Control/Monad/Trans/RWS/CPS.hs | 406 --------------------- 1 file changed, 406 deletions(-) delete mode 100644 third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs (limited to 'third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs') diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs deleted file mode 100644 index 8a565e1652c3..000000000000 --- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/RWS/CPS.hs +++ /dev/null @@ -1,406 +0,0 @@ -{-# LANGUAGE CPP #-} -#if __GLASGOW_HASKELL__ >= 702 -{-# LANGUAGE Safe #-} -#endif -#if __GLASGOW_HASKELL__ >= 710 -{-# LANGUAGE AutoDeriveTypeable #-} -#endif ------------------------------------------------------------------------------ --- | --- Module : Control.Monad.Trans.RWS.CPS --- Copyright : (c) Daniel Mendler 2016, --- (c) Andy Gill 2001, --- (c) Oregon Graduate Institute of Science and Technology, 2001 --- License : BSD-style (see the file LICENSE) --- --- Maintainer : R.Paterson@city.ac.uk --- Stability : experimental --- Portability : portable --- --- A monad transformer that combines 'ReaderT', 'WriterT' and 'StateT'. --- This version uses continuation-passing-style for the writer part --- to achieve constant space usage. --- For a lazy version with the same interface, --- see "Control.Monad.Trans.RWS.Lazy". ------------------------------------------------------------------------------ - -module Control.Monad.Trans.RWS.CPS ( - -- * The RWS monad - RWS, - rws, - runRWS, - evalRWS, - execRWS, - mapRWS, - withRWS, - -- * The RWST monad transformer - RWST, - rwsT, - runRWST, - evalRWST, - execRWST, - mapRWST, - withRWST, - -- * Reader operations - reader, - ask, - local, - asks, - -- * Writer operations - writer, - tell, - listen, - listens, - pass, - censor, - -- * State operations - state, - get, - put, - modify, - gets, - -- * Lifting other operations - liftCallCC, - liftCallCC', - liftCatch, - ) where - -import Control.Applicative -import Control.Monad -import Control.Monad.Fix -import Control.Monad.IO.Class -import Control.Monad.Trans.Class -import Control.Monad.Signatures -import Data.Functor.Identity - -#if !(MIN_VERSION_base(4,8,0)) -import Data.Monoid -#endif - -#if MIN_VERSION_base(4,9,0) -import qualified Control.Monad.Fail as Fail -#endif - --- | A monad containing an environment of type @r@, output of type @w@ --- and an updatable state of type @s@. -type RWS r w s = RWST r w s Identity - --- | Construct an RWS computation from a function. --- (The inverse of 'runRWS'.) -rws :: (Monoid w) => (r -> s -> (a, s, w)) -> RWS r w s a -rws f = RWST $ \ r s w -> - let (a, s', w') = f r s; wt = w `mappend` w' in wt `seq` return (a, s', wt) -{-# INLINE rws #-} - --- | Unwrap an RWS computation as a function. --- (The inverse of 'rws'.) -runRWS :: (Monoid w) => RWS r w s a -> r -> s -> (a, s, w) -runRWS m r s = runIdentity (runRWST m r s) -{-# INLINE runRWS #-} - --- | Evaluate a computation with the given initial state and environment, --- returning the final value and output, discarding the final state. -evalRWS :: (Monoid w) - => RWS r w s a -- ^RWS computation to execute - -> r -- ^initial environment - -> s -- ^initial value - -> (a, w) -- ^final value and output -evalRWS m r s = let - (a, _, w) = runRWS m r s - in (a, w) -{-# INLINE evalRWS #-} - --- | Evaluate a computation with the given initial state and environment, --- returning the final state and output, discarding the final value. -execRWS :: (Monoid w) - => RWS r w s a -- ^RWS computation to execute - -> r -- ^initial environment - -> s -- ^initial value - -> (s, w) -- ^final state and output -execRWS m r s = let - (_, s', w) = runRWS m r s - in (s', w) -{-# INLINE execRWS #-} - --- | Map the return value, final state and output of a computation using --- the given function. --- --- * @'runRWS' ('mapRWS' f m) r s = f ('runRWS' m r s)@ -mapRWS :: (Monoid w, Monoid w') => ((a, s, w) -> (b, s, w')) -> RWS r w s a -> RWS r w' s b -mapRWS f = mapRWST (Identity . f . runIdentity) -{-# INLINE mapRWS #-} - --- | @'withRWS' f m@ executes action @m@ with an initial environment --- and state modified by applying @f@. --- --- * @'runRWS' ('withRWS' f m) r s = 'uncurry' ('runRWS' m) (f r s)@ -withRWS :: (r' -> s -> (r, s)) -> RWS r w s a -> RWS r' w s a -withRWS = withRWST -{-# INLINE withRWS #-} - --- --------------------------------------------------------------------------- --- | A monad transformer adding reading an environment of type @r@, --- collecting an output of type @w@ and updating a state of type @s@ --- to an inner monad @m@. -newtype RWST r w s m a = RWST { unRWST :: r -> s -> w -> m (a, s, w) } - --- | Construct an RWST computation from a function. --- (The inverse of 'runRWST'.) -rwsT :: (Functor m, Monoid w) => (r -> s -> m (a, s, w)) -> RWST r w s m a -rwsT f = RWST $ \ r s w -> - (\ (a, s', w') -> let wt = w `mappend` w' in wt `seq` (a, s', wt)) <$> f r s -{-# INLINE rwsT #-} - --- | Unwrap an RWST computation as a function. --- (The inverse of 'rwsT'.) -runRWST :: (Monoid w) => RWST r w s m a -> r -> s -> m (a, s, w) -runRWST m r s = unRWST m r s mempty -{-# INLINE runRWST #-} - --- | Evaluate a computation with the given initial state and environment, --- returning the final value and output, discarding the final state. -evalRWST :: (Monad m, Monoid w) - => RWST r w s m a -- ^computation to execute - -> r -- ^initial environment - -> s -- ^initial value - -> m (a, w) -- ^computation yielding final value and output -evalRWST m r s = do - (a, _, w) <- runRWST m r s - return (a, w) -{-# INLINE evalRWST #-} - --- | Evaluate a computation with the given initial state and environment, --- returning the final state and output, discarding the final value. -execRWST :: (Monad m, Monoid w) - => RWST r w s m a -- ^computation to execute - -> r -- ^initial environment - -> s -- ^initial value - -> m (s, w) -- ^computation yielding final state and output -execRWST m r s = do - (_, s', w) <- runRWST m r s - return (s', w) -{-# INLINE execRWST #-} - --- | Map the inner computation using the given function. --- --- * @'runRWST' ('mapRWST' f m) r s = f ('runRWST' m r s)@ ---mapRWST :: (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b -mapRWST :: (Monad n, Monoid w, Monoid w') => - (m (a, s, w) -> n (b, s, w')) -> RWST r w s m a -> RWST r w' s n b -mapRWST f m = RWST $ \ r s w -> do - (a, s', w') <- f (runRWST m r s) - let wt = w `mappend` w' - wt `seq` return (a, s', wt) -{-# INLINE mapRWST #-} - --- | @'withRWST' f m@ executes action @m@ with an initial environment --- and state modified by applying @f@. --- --- * @'runRWST' ('withRWST' f m) r s = 'uncurry' ('runRWST' m) (f r s)@ -withRWST :: (r' -> s -> (r, s)) -> RWST r w s m a -> RWST r' w s m a -withRWST f m = RWST $ \ r s -> uncurry (unRWST m) (f r s) -{-# INLINE withRWST #-} - -instance (Functor m) => Functor (RWST r w s m) where - fmap f m = RWST $ \ r s w -> (\ (a, s', w') -> (f a, s', w')) <$> unRWST m r s w - {-# INLINE fmap #-} - -instance (Functor m, Monad m) => Applicative (RWST r w s m) where - pure a = RWST $ \ _ s w -> return (a, s, w) - {-# INLINE pure #-} - - RWST mf <*> RWST mx = RWST $ \ r s w -> do - (f, s', w') <- mf r s w - (x, s'', w'') <- mx r s' w' - return (f x, s'', w'') - {-# INLINE (<*>) #-} - -instance (Functor m, MonadPlus m) => Alternative (RWST r w s m) where - empty = RWST $ \ _ _ _ -> mzero - {-# INLINE empty #-} - - RWST m <|> RWST n = RWST $ \ r s w -> m r s w `mplus` n r s w - {-# INLINE (<|>) #-} - -instance (Monad m) => Monad (RWST r w s m) where -#if !(MIN_VERSION_base(4,8,0)) - return a = RWST $ \ _ s w -> return (a, s, w) - {-# INLINE return #-} -#endif - - m >>= k = RWST $ \ r s w -> do - (a, s', w') <- unRWST m r s w - unRWST (k a) r s' w' - {-# INLINE (>>=) #-} - -#if !(MIN_VERSION_base(4,13,0)) - fail msg = RWST $ \ _ _ _ -> fail msg - {-# INLINE fail #-} -#endif - -#if MIN_VERSION_base(4,9,0) -instance (Fail.MonadFail m) => Fail.MonadFail (RWST r w s m) where - fail msg = RWST $ \ _ _ _ -> Fail.fail msg - {-# INLINE fail #-} -#endif - -instance (Functor m, MonadPlus m) => MonadPlus (RWST r w s m) where - mzero = empty - {-# INLINE mzero #-} - mplus = (<|>) - {-# INLINE mplus #-} - -instance (MonadFix m) => MonadFix (RWST r w s m) where - mfix f = RWST $ \ r s w -> mfix $ \ ~(a, _, _) -> unRWST (f a) r s w - {-# INLINE mfix #-} - -instance MonadTrans (RWST r w s) where - lift m = RWST $ \ _ s w -> do - a <- m - return (a, s, w) - {-# INLINE lift #-} - -instance (MonadIO m) => MonadIO (RWST r w s m) where - liftIO = lift . liftIO - {-# INLINE liftIO #-} --- --------------------------------------------------------------------------- --- Reader operations - --- | Constructor for computations in the reader monad (equivalent to 'asks'). -reader :: (Monad m) => (r -> a) -> RWST r w s m a -reader = asks -{-# INLINE reader #-} - --- | Fetch the value of the environment. -ask :: (Monad m) => RWST r w s m r -ask = asks id -{-# INLINE ask #-} - --- | Execute a computation in a modified environment --- --- * @'runRWST' ('local' f m) r s = 'runRWST' m (f r) s@ -local :: (r -> r) -> RWST r w s m a -> RWST r w s m a -local f m = RWST $ \ r s w -> unRWST m (f r) s w -{-# INLINE local #-} - --- | Retrieve a function of the current environment. --- --- * @'asks' f = 'liftM' f 'ask'@ -asks :: (Monad m) => (r -> a) -> RWST r w s m a -asks f = RWST $ \ r s w -> return (f r, s, w) -{-# INLINE asks #-} - --- --------------------------------------------------------------------------- --- Writer operations - --- | Construct a writer computation from a (result, output) pair. -writer :: (Monoid w, Monad m) => (a, w) -> RWST r w s m a -writer (a, w') = RWST $ \ _ s w -> let wt = w `mappend` w' in wt `seq` return (a, s, wt) -{-# INLINE writer #-} - --- | @'tell' w@ is an action that produces the output @w@. -tell :: (Monoid w, Monad m) => w -> RWST r w s m () -tell w' = writer ((), w') -{-# INLINE tell #-} - --- | @'listen' m@ is an action that executes the action @m@ and adds its --- output to the value of the computation. --- --- * @'runRWST' ('listen' m) r s = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runRWST' m r s)@ -listen :: (Monoid w, Monad m) => RWST r w s m a -> RWST r w s m (a, w) -listen = listens id -{-# INLINE listen #-} - --- | @'listens' f m@ is an action that executes the action @m@ and adds --- the result of applying @f@ to the output to the value of the computation. --- --- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@ --- --- * @'runRWST' ('listens' f m) r s = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runRWST' m r s)@ -listens :: (Monoid w, Monad m) => (w -> b) -> RWST r w s m a -> RWST r w s m (a, b) -listens f m = RWST $ \ r s w -> do - (a, s', w') <- runRWST m r s - let wt = w `mappend` w' - wt `seq` return ((a, f w'), s', wt) -{-# INLINE listens #-} - --- | @'pass' m@ is an action that executes the action @m@, which returns --- a value and a function, and returns the value, applying the function --- to the output. --- --- * @'runRWST' ('pass' m) r s = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runRWST' m r s)@ -pass :: (Monoid w, Monoid w', Monad m) => RWST r w s m (a, w -> w') -> RWST r w' s m a -pass m = RWST $ \ r s w -> do - ((a, f), s', w') <- runRWST m r s - let wt = w `mappend` f w' - wt `seq` return (a, s', wt) -{-# INLINE pass #-} - --- | @'censor' f m@ is an action that executes the action @m@ and --- applies the function @f@ to its output, leaving the return value --- unchanged. --- --- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@ --- --- * @'runRWST' ('censor' f m) r s = 'liftM' (\\ (a, w) -> (a, f w)) ('runRWST' m r s)@ -censor :: (Monoid w, Monad m) => (w -> w) -> RWST r w s m a -> RWST r w s m a -censor f m = RWST $ \ r s w -> do - (a, s', w') <- runRWST m r s - let wt = w `mappend` f w' - wt `seq` return (a, s', wt) -{-# INLINE censor #-} - --- --------------------------------------------------------------------------- --- State operations - --- | Construct a state monad computation from a state transformer function. -state :: (Monad m) => (s -> (a, s)) -> RWST r w s m a -state f = RWST $ \ _ s w -> let (a, s') = f s in return (a, s', w) -{-# INLINE state #-} - --- | Fetch the current value of the state within the monad. -get :: (Monad m) =>RWST r w s m s -get = gets id -{-# INLINE get #-} - --- | @'put' s@ sets the state within the monad to @s@. -put :: (Monad m) =>s -> RWST r w s m () -put s = RWST $ \ _ _ w -> return ((), s, w) -{-# INLINE put #-} - --- | @'modify' f@ is an action that updates the state to the result of --- applying @f@ to the current state. --- --- * @'modify' f = 'get' >>= ('put' . f)@ -modify :: (Monad m) =>(s -> s) -> RWST r w s m () -modify f = RWST $ \ _ s w -> return ((), f s, w) -{-# INLINE modify #-} - --- | Get a specific component of the state, using a projection function --- supplied. --- --- * @'gets' f = 'liftM' f 'get'@ -gets :: (Monad m) =>(s -> a) -> RWST r w s m a -gets f = RWST $ \ _ s w -> return (f s, s, w) -{-# INLINE gets #-} - --- | Uniform lifting of a @callCC@ operation to the new monad. --- This version rolls back to the original state on entering the --- continuation. -liftCallCC :: CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b -liftCallCC callCC f = RWST $ \ r s w -> - callCC $ \ c -> unRWST (f (\ a -> RWST $ \ _ _ _ -> c (a, s, w))) r s w -{-# INLINE liftCallCC #-} - --- | In-situ lifting of a @callCC@ operation to the new monad. --- This version uses the current state on entering the continuation. -liftCallCC' :: CallCC m (a,s,w) (b,s,w) -> CallCC (RWST r w s m) a b -liftCallCC' callCC f = RWST $ \ r s w -> - callCC $ \ c -> unRWST (f (\ a -> RWST $ \ _ s' _ -> c (a, s', w))) r s w -{-# INLINE liftCallCC' #-} - --- | Lift a @catchE@ operation to the new monad. -liftCatch :: Catch e m (a,s,w) -> Catch e (RWST r w s m) a -liftCatch catchE m h = - RWST $ \ r s w -> unRWST m r s w `catchE` \ e -> unRWST (h e) r s w -{-# INLINE liftCatch #-} -- cgit 1.4.1